cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036913 Sparsely totient numbers; numbers n such that m > n implies phi(m) > phi(n).

Original entry on oeis.org

2, 6, 12, 18, 30, 42, 60, 66, 90, 120, 126, 150, 210, 240, 270, 330, 420, 462, 510, 630, 660, 690, 840, 870, 1050, 1260, 1320, 1470, 1680, 1890, 2310, 2730, 2940, 3150, 3570, 3990, 4620, 4830, 5460, 5610, 5670, 6090, 6930, 7140, 7350, 8190, 9240, 9660
Offset: 1

Views

Author

Keywords

Comments

The paper by Masser and Shiu lists 150 terms of this sequence less than 10^6. For odd prime p, they show that p# and p*p# are in this sequence, where p# denotes the primorial (A002110). - T. D. Noe, Jun 14 2006
Conjecture: Except for 2 and 18, all terms are Zumkeller numbers (A083207). Verified for the first 1800 terms. - Ivan N. Ianakiev, Sep 04 2022

Examples

			This sequence contains 60 because of all the numbers whose totient is <=16, 60 is the largest such number. [From _Graeme McRae_, Feb 12 2009]
From _Michael De Vlieger_, Jun 25 2017: (Start)
Positions of primorials A002110(k) in a(n):
     n     k       a(n) = A002110(k)
  ----------------------------------
     1     1                       2
     2     2                       6
     5     3                      30
    13     4                     210
    31     5                    2310
    69     6                   30030
   136     7                  510510
   231     8                 9699690
   374     9               223092870
   578    10              6469693230
   836    11            200560490130
  1169    12           7420738134810
  1591    13         304250263527210
  2149    14       13082761331670030
  2831    15      614889782588491410
  3667    16    32589158477190044730
  4661    17  1922760350154212639070
(End)
		

Crossrefs

Cf. A097942 (highly totient numbers). Records in A006511 (see also A132154).

Programs

  • Mathematica
    nn=10000; lastN=Table[0,{nn}]; Do[e=EulerPhi[n]; If[e<=nn, lastN[[e]]=n], {n,10nn}]; mx=0; lst={}; Do[If[lastN[[i]]>mx, mx=lastN[[i]]; AppendTo[lst,mx]], {i,Length[lastN]}]; lst (* T. D. Noe, Jun 14 2006 *)