A036913 Sparsely totient numbers; numbers n such that m > n implies phi(m) > phi(n).
2, 6, 12, 18, 30, 42, 60, 66, 90, 120, 126, 150, 210, 240, 270, 330, 420, 462, 510, 630, 660, 690, 840, 870, 1050, 1260, 1320, 1470, 1680, 1890, 2310, 2730, 2940, 3150, 3570, 3990, 4620, 4830, 5460, 5610, 5670, 6090, 6930, 7140, 7350, 8190, 9240, 9660
Offset: 1
Keywords
Examples
This sequence contains 60 because of all the numbers whose totient is <=16, 60 is the largest such number. [From _Graeme McRae_, Feb 12 2009] From _Michael De Vlieger_, Jun 25 2017: (Start) Positions of primorials A002110(k) in a(n): n k a(n) = A002110(k) ---------------------------------- 1 1 2 2 2 6 5 3 30 13 4 210 31 5 2310 69 6 30030 136 7 510510 231 8 9699690 374 9 223092870 578 10 6469693230 836 11 200560490130 1169 12 7420738134810 1591 13 304250263527210 2149 14 13082761331670030 2831 15 614889782588491410 3667 16 32589158477190044730 4661 17 1922760350154212639070 (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..5000
- Roger C. Baker and Glyn Harman, Sparsely totient numbers, Annales de la Faculté des Sciences de Toulouse Ser. 6, 5 no. 2 (1996), 183-190.
- Glyn Harman, On sparsely totient numbers, Glasgow Math. J. 33 (1991), 349-358.
- D. W. Masser and P. Shiu, On sparsely totient numbers, Pacific J. Math. 121, no. 2 (1986), 407-426.
- Michael De Vlieger, Largest k such that A002110(k) | a(n) and A287352(a(n)).
- Michael De Vlieger, First term m > prime(n)^2 in A036913 such that gcd(prime(n), m) = 1.
Programs
-
Mathematica
nn=10000; lastN=Table[0,{nn}]; Do[e=EulerPhi[n]; If[e<=nn, lastN[[e]]=n], {n,10nn}]; mx=0; lst={}; Do[If[lastN[[i]]>mx, mx=lastN[[i]]; AppendTo[lst,mx]], {i,Length[lastN]}]; lst (* T. D. Noe, Jun 14 2006 *)
Comments