A036797
Iccanobif (or iccanobiF) primes: primes which are Fibonacci numbers when reversed.
Original entry on oeis.org
2, 3, 5, 31, 43, 773, 7951, 52057, 64901, 393121, 56577108676171, 940647607443258103531, 5237879497657222310489731409575442761, 9026258083384996860449366072142307801963, 19900335674812302969315720344396951060628175943800862267761734431012073266446403
Offset: 1
A036971
Numbers k such that the k-th Fibonacci number reversed is prime.
Original entry on oeis.org
3, 4, 5, 7, 9, 14, 17, 21, 25, 26, 65, 98, 175, 191, 382, 497, 653, 1577, 1942, 1958, 2405, 4246, 4878, 5367, 9142, 9318, 10921, 17833, 20433, 50373, 66571, 85098, 93699, 104075
Offset: 1
-
revdigs:= proc(n) local L;
L:= convert(n,base,10);
add(L[-i]*10^(i-1),i=1..nops(L))
end proc:
select(isprime@revdigs@combinat:-fibonacci, [$1..10000]); # Robert Israel, Oct 29 2017
-
a = Table[FromDigits[Reverse[IntegerDigits[Fibonacci[j]]]], {j, 10000}]; b = Select[a, PrimeQ[ # ] &]; Flatten[Table[Position[a, b[[i]]], {i, 1, Length[b]}]]
Select[Range[9400],PrimeQ[IntegerReverse[Fibonacci[#]]]&] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Dec 08 2015 *)
-
lista(nn) = for(n=3, nn, if(ispseudoprime(eval(concat(Vecrev(Str(fibonacci(n)))))), print1(n, ", "))) \\ Iain Fox, Oct 28 2017
a(25)-a(26) from Vit Planocka (planocka(AT)mistral.cz), Feb 25 2003
Showing 1-2 of 2 results.
Comments