cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036990 Numbers n such that, in the binary expansion of n, reading from right to left, the number of 1's never exceeds the number of 0's.

Original entry on oeis.org

0, 2, 4, 8, 10, 12, 16, 18, 20, 24, 32, 34, 36, 40, 42, 44, 48, 50, 52, 56, 64, 66, 68, 72, 74, 76, 80, 82, 84, 88, 96, 98, 100, 104, 112, 128, 130, 132, 136, 138, 140, 144, 146, 148, 152, 160, 162, 164, 168, 170, 172, 176, 178, 180, 184, 192, 194, 196, 200, 202, 204
Offset: 1

Views

Author

Keywords

Comments

A036989(a(n)) = 1. - Reinhard Zumkeller, Jul 31 2013

Crossrefs

Each term is 2^n * some term of A014486 (n >= 0).
Cf. A030308.

Programs

  • Haskell
    a036990 n = a036990_list !! (n-1)
    a036990_list = filter ((== 1) . a036989) [0..]
    -- Reinhard Zumkeller, Jul 31 2013
  • Mathematica
    fQ[n_] := Block[{od = ev = k = 0, id = Reverse@IntegerDigits[n, 2], lmt = Floor@Log[2, n] + 1}, While[k < lmt && od < ev + 1, If[OddQ@id[[k + 1]], od++, ev++ ]; k++ ]; If[k == lmt && od < ev + 1, True, False]]; Select[ Range[0, 204, 2], fQ@# &] (* Robert G. Wilson v, Jan 11 2007 *)
    (* b = A036989 *) b[0] = 1; b[n_?EvenQ] := b[n] = Max[b[n/2]-1, 1]; b[n_] := b[n] = b[(n-1)/2]+1; Select[Range[0, 300, 2], b[#] == 1 &] (* Jean-François Alcover, Nov 05 2013, after Reinhard Zumkeller *)

Formula

Extensions

More terms from Erich Friedman.