A036990 Numbers n such that, in the binary expansion of n, reading from right to left, the number of 1's never exceeds the number of 0's.
0, 2, 4, 8, 10, 12, 16, 18, 20, 24, 32, 34, 36, 40, 42, 44, 48, 50, 52, 56, 64, 66, 68, 72, 74, 76, 80, 82, 84, 88, 96, 98, 100, 104, 112, 128, 130, 132, 136, 138, 140, 144, 146, 148, 152, 160, 162, 164, 168, 170, 172, 176, 178, 180, 184, 192, 194, 196, 200, 202, 204
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- H. Niederreiter and M. Vielhaber, Tree complexity and a doubly exponential gap between structured and random sequences, J. Complexity, 12 (1996), 187-198.
Crossrefs
Programs
-
Haskell
a036990 n = a036990_list !! (n-1) a036990_list = filter ((== 1) . a036989) [0..] -- Reinhard Zumkeller, Jul 31 2013
-
Mathematica
fQ[n_] := Block[{od = ev = k = 0, id = Reverse@IntegerDigits[n, 2], lmt = Floor@Log[2, n] + 1}, While[k < lmt && od < ev + 1, If[OddQ@id[[k + 1]], od++, ev++ ]; k++ ]; If[k == lmt && od < ev + 1, True, False]]; Select[ Range[0, 204, 2], fQ@# &] (* Robert G. Wilson v, Jan 11 2007 *) (* b = A036989 *) b[0] = 1; b[n_?EvenQ] := b[n] = Max[b[n/2]-1, 1]; b[n_] := b[n] = b[(n-1)/2]+1; Select[Range[0, 300, 2], b[#] == 1 &] (* Jean-François Alcover, Nov 05 2013, after Reinhard Zumkeller *)
Formula
a(n) = 2*A095775(n). - Robert G. Wilson v
Extensions
More terms from Erich Friedman.
Comments