cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037019 Let n = p_1*p_2*...*p_k be the prime factorization of n, with the primes sorted in descending order. Then a(n) = 2^(p_1 - 1)*3^(p_2 - 1)*...*A000040(k)^(p_k - 1).

Original entry on oeis.org

1, 2, 4, 6, 16, 12, 64, 30, 36, 48, 1024, 60, 4096, 192, 144, 210, 65536, 180, 262144, 240, 576, 3072, 4194304, 420, 1296, 12288, 900, 960, 268435456, 720, 1073741824, 2310, 9216, 196608, 5184, 1260, 68719476736, 786432, 36864, 1680, 1099511627776
Offset: 1

Views

Author

Keywords

Comments

This is an easy way to produce a number with exactly n divisors and it usually produces the smallest such number (A005179(n)). The references call n "ordinary" if A005179(n) = a(n) and "exceptional" or "extraordinary" otherwise. - David Wasserman, Jun 12 2002

Examples

			12 = 3*2*2, so a(12) = 2^2*3*5 = 60.
		

Crossrefs

Cf. A005179, A000040, A072066 (exceptional (or extraordinary) numbers).
Cf. A027746.

Programs

  • Haskell
    a037019 = product .
       zipWith (^) a000040_list . reverse . map (subtract 1) . a027746_row
    -- Reinhard Zumkeller, Nov 25 2012
    
  • Maple
    a:= n-> (l-> mul(ithprime(i)^(l[i]-1), i=1..nops(l)))(
            sort(map(i-> i[1]$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 28 2019
  • Mathematica
    (Times@@(Prime[ Range[ Length[ # ] ] ]^Reverse[ #-1 ]))&@Flatten[ FactorInteger[ n ]/.{ a_Integer, b_}:>Table[ a, {b} ] ]
  • PARI
    A037019(n,p=1)=prod(i=1,#f=Vecrev(factor(n)~),prod(j=1,f[i][2],(p=nextprime(p+1))^(f[i][1]-1))) \\ M. F. Hasler, Oct 14 2014
    
  • Python
    from math import prod
    from sympy import factorint, prime
    def a(n):
        pf = factorint(n, multiple=True)
        return prod(prime(i)**(pi-1) for i, pi in enumerate(pf[::-1], 1))
    print([a(n) for n in range(1, 42)]) # Michael S. Branicky, Jul 24 2022

Extensions

More terms from David Wasserman, Jun 12 2002