cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037024 Position of start of first occurrence of prime(n) after the decimal point in expansion of Pi.

Original entry on oeis.org

6, 9, 4, 13, 94, 110, 95, 37, 16, 186, 137, 46, 2, 23, 119, 8, 4, 219, 98, 39, 299, 13, 26, 11, 12, 852, 3486, 1487, 206, 362, 297, 1096, 859, 525, 2606, 393, 1657, 1410, 1182, 428, 438, 728, 1944, 168, 37, 704, 93, 135, 484, 185, 229, 1688, 1707, 1713, 1006
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Examples

			Pi = 3.14159265358979323846264338327950288... (see A000796).
First occurrence of prime(23) = 83 starts at the 26th digit after the decimal point, hence a(23) = 26.
		

Crossrefs

Programs

  • Magma
    k:=3500; R := RealField(k); [ Position(IntegerToString(Round(10^k*(-3 + Pi(R)))), IntegerToString(NthPrime(n))) : n in [1..55] ]; /* Klaus Brockhaus, Feb 15 2007 */
    
  • Mathematica
    Module[{p = Rest[First[RealDigits[Pi, 10, 10^4]]], n = 0, a}, Reap[While[(a = SequencePosition[p, IntegerDigits[Prime[++n]], 1]) != {}, Sow[a[[1, 1]]]]][[2, 1]]] (* Paolo Xausa, Aug 01 2024 *)
  • Python
    from itertools import takewhile
    from sympy import S, prime, primerange
    # download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then
    # with open('pi-billion.txt', 'r') as f: pi_digits = f.readline()[1:]
    pi_digits = str(S.Pi.n(10**4))[1:] # alternative to above
    def aupton(nn):
        plocs = (pi_digits.find(str(p)) for p in primerange(2, prime(nn)+1))
        return list(takewhile(lambda x: x>=0, plocs)) # until p not found
    print(aupton(55)) # Michael S. Branicky, Jun 12 2021

Extensions

Edited by Klaus Brockhaus, Feb 15 2007