cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037026 Number of B-trees of order 4 with n leaves.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 5, 9, 15, 28, 45, 73, 116, 199, 345, 601, 1021, 1738, 2987, 5244, 9321, 16720, 30103, 54345, 97996, 176011, 314045, 556577, 980852, 1722451, 3020214, 5298570, 9316456, 16440262, 29136489, 51860214, 92643425, 165934156
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A014535.

Programs

  • Maple
    spec := [ B, {B=Union(Z, Subst(M, B)), M=Union(Prod(Z,Z),Prod(Z,Z,Z),Prod(Z$4))} ]: [ seq(combstruct[count](spec, size=n), n=0..42) ];
  • Mathematica
    nn=38;f[x_]:=Sum[a[n]x^n,{n,0,nn}];a[0]=0;sol=SolveAlways[0==Series[f[x]-x-f[x^2+x^3+x^4],{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol  (* Geoffrey Critzer, Mar 28 2013 *)

Formula

G.f. A(x) satisfies: A(x) = x + A(x^2+x^3+x^4). [Geoffrey Critzer, Mar 28 2013]