cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A119262 Number of B-trees of order infinity with n leaves, where a(n) = Sum_{k=1..floor(n/2)} a(k)*C(n-k-1,n-2*k) for n >= 2, with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 5, 8, 14, 25, 46, 85, 158, 294, 548, 1022, 1908, 3567, 6683, 12556, 23669, 44781, 85046, 162122, 310157, 595322, 1146057, 2212004, 4278908, 8292738, 16097018, 31286456, 60873574, 118543329, 231009934, 450434739, 878687665
Offset: 0

Views

Author

Paul D. Hanna, May 11 2006

Keywords

Comments

A B-tree of order m is an ordered tree such that every node has at most m children, the root has at least 2 children, every node except the root has 0 or at least m/2 children, all end-nodes are at the same level. This sequence is the limit of the B-trees as m --> infinity.
Starting with offset 2, the eigensequence of triangle A011973. - Gary W. Adamson, Jul 08 2012
Number of balanced series-reduced rooted plane trees with n leaves. A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root. - Gus Wiseman, Oct 07 2018

Examples

			A(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 8*x^7 + 14*x^8 + ...
Series form:
A(x) = x + x^2/(1-x) + x^4/((1-x)*((1-x)-x^2)) + x^8/((1-x)*((1-x)-x^2)*((1-x)*((1-x)-x^2)-x^4)) + ... + x^(2^n)/D(n,x) + x^(2^(n+1))/[D(n,x)*(D(n,x)-x^(2^n))] + ...
Terms also satisfy the series:
x = x*(1-x) + x^2*(1-x^2)/(1+x) + x^3*(1-x^3)/(1+x)^2 + 2*x^4*(1-x^4)/(1+x)^3 + 3*x^5*(1-x^5)/(1+x)^4 + 5*x^6*(1-x^6)/(1+x)^5 + 8*x^7*(1-x^7)/(1+x)^6 + 14*x^8*(1-x^8)/(1+x)^7 + 25*x^9*(1-x^9)/(1+x)^8 + ... + a(n)*x^n*(1-x^n)/(1+x)^(n-1) + ...
From _Gus Wiseman_, Oct 07 2018: (Start)
The a(1) = 1 through a(7) = 8 balanced series-reduced rooted plane trees:
  o  (oo)  (ooo)  (oooo)      (ooooo)      (oooooo)        (ooooooo)
                  ((oo)(oo))  ((oo)(ooo))  ((oo)(oooo))    ((oo)(ooooo))
                              ((ooo)(oo))  ((ooo)(ooo))    ((ooo)(oooo))
                                           ((oooo)(oo))    ((oooo)(ooo))
                                           ((oo)(oo)(oo))  ((ooooo)(oo))
                                                           ((oo)(oo)(ooo))
                                                           ((oo)(ooo)(oo))
                                                           ((ooo)(oo)(oo))
(End)
		

Crossrefs

Cf. A092684 (similar recurrence); B-trees: A014535 (order 3), A037026 (order 4), A058521 (order 5).
Cf. A011973.

Programs

  • Mathematica
    nn=38;f[x_]:=Sum[a[n]x^n,{n,0,nn}];a[0]=0;sol=SolveAlways[0==Series[f[x]-x-f[x^2/(1-x)],{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol  (* Geoffrey Critzer, Mar 28 2013 *)
  • PARI
    a(n)=if(n==0,0,if(n==1,1,sum(k=1,n\2,a(k)*binomial(n-k-1,n-2*k))))
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    /* From: A(x) = x + A(x^2/(1-x)) */
    {a(n)=local(A=x);for(i=1,n,A=x+subst(A,x,x^2/(1-x+x*O(x^n))));polcoeff(A,n)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    /* From: x = Sum_{n>=1} a(n)*x^n*(1-x^n)/(1+x)^(n-1) */
    a(n)=if(n==1, 1, -polcoeff(sum(k=1, n-1, a(k)*x^k*(1-x^k)/(1+x+x*O(x^n))^(k-1)), n))
    for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 31 2013

Formula

G.f. A(x) satisfies: A(x) = x + A(x^2/(1-x)).
G.f.: Sum_{n>=0} x^(2^n)/D(n,x) where D(0,x)=1, D(n+1,x) = D(n,x)*[D(n,x) - x^(2^n)].
G.f.: x = Sum_{n>=1} a(n) * x^n * (1-x^n) / (1+x)^(n-1). - Paul D. Hanna, Jul 31 2013
Conjecture: Let M_n be an n X n matrix whose elements are m_ij = 0 for i < j - 1, m_ij = -1 for i = j - 1, and m_ij = binomial(i - j, n - i) otherwise. Then a(n + 1) = Det(M_n). - Benedict W. J. Irwin, Apr 19 2017

A058521 B-trees of order 5 with n labeled leaves.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 11, 20, 36, 67, 121, 215, 377, 657, 1154, 2045, 3666, 6628, 12063, 22079, 40642, 75264, 140191, 262457, 493297, 929703, 1754941, 3314509, 6258052, 11803995, 22232306, 41801393, 78453563, 146987053, 274957984
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [ B, {B=Union(Z, Subst(M, B)), M=Union(Prod(Z,Z),Prod(Z,Z,Z),Prod(Z$4),Prod(Z$5))} ]: [seq(combstruct[count](spec, size=n), n=1..40)];
  • Mathematica
    nn=38;f[x_]:=Sum[a[n]x^n,{n,0,nn}];a[0]=0;sol=SolveAlways[0==Series[f[x]-x-f[x^2+x^3+x^4+x^5],{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol  (* Geoffrey Critzer, Mar 28 2013 *)

Formula

G.f. A(x) satisfies: A(x) = x + A(x^2+x^3+x^4+x^5). [Geoffrey Critzer, Mar 28 2013]

A106624 Expansion of g.f.: (1 - x^2 + x^3)/((1-x^2)*(1-2*x^2)).

Original entry on oeis.org

1, 0, 2, 1, 4, 3, 8, 7, 16, 15, 32, 31, 64, 63, 128, 127, 256, 255, 512, 511, 1024, 1023, 2048, 2047, 4096, 4095, 8192, 8191, 16384, 16383, 32768, 32767, 65536, 65535, 131072, 131071, 262144, 262143, 524288, 524287, 1048576, 1048575, 2097152
Offset: 0

Views

Author

Robert H Barbour, May 10 2005

Keywords

Comments

Cumulative column frequency of occurrence of 0's and 1's iterated in a binary tree where each node in the tree holds a value of 0 or 1, beginning with a count of 1.

References

  • Douglas Comer, Ubiquitous B-Tree, ACM Computing Surveys (CSUR), (1979), Volume 11 Issue 2.
  • Huffman, D. A., A method for the construction of minimum redundancy codes, Proc. IRE 40 (1951), 1098-1101.
  • Knuth, D. E., Dynamic Huffman coding. J. Algorithms 6 (1985), 163-180.

Crossrefs

Cf. A016116, A014535, A037026, A058518 - A058521, A000079 (bisection), A000225 (bisection).

Programs

  • Magma
    [2^Floor(n/2) + Floor((-1)^n - 1)/2: n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
    
  • Maple
    A106624 := proc(N)
        2^floor(n/2)+((-1)^n-1)/2 ;
    end proc:
    seq(A106624(n),n=0..20) ; # R. J. Mathar, Apr 14 2018
  • Mathematica
    Table[2^Floor[n/2] +Floor[(-1)^n-1]/2, {n,0,50}] (* G. C. Greubel, Feb 19 2019 *)
  • PARI
    vector(50,n, n--; 2^floor(n/2) +floor((-1)^n-1)/2) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [2^floor(n/2) +floor((-1)^n-1)/2 for n in (0..50)] # G. C. Greubel, Feb 19 2019

Formula

a(n) = 2^floor(n/2) + floor((-1)^n - 1)/2. - N. J. A. Sloane, May 15 2005

Extensions

New definition from N. J. A. Sloane, May 15 2008
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A001131 Number of red-black rooted trees with n-1 internal nodes.

Original entry on oeis.org

0, 1, 2, 2, 3, 8, 14, 20, 35, 64, 122, 260, 586, 1296, 2708, 5400, 10468, 19888, 37580, 71960, 140612, 279264, 560544, 1133760, 2310316, 4750368, 9876264, 20788880, 44282696, 95241664, 206150208, 447470464, 970862029, 2100029344
Offset: 0

Views

Author

Keywords

Comments

Are a(2) = a(3) = 2 and a(4) = 3 the only primes in this sequence? - Jonathan Vos Post, Jun 17 2005

Crossrefs

Programs

  • Maple
    spec := [B, {B=Union(Z, Subst(M, B)), M=Union(Prod(Z,Z),Prod(Z,Z,Z,Z))} ]; [seq(combstruct[count](spec, size=2*n), n=0..40)]; # N. J. A. Sloane, Dec 21 2000. Compare A014535, A037026.
    a := proc(n) option remember; if n < 3 then return n fi; add(binomial(2*k, n-2*k)*a(k), k = iquo(n,4)..iquo(n,2)) end:
    seq(a(n), n=0..33); # Peter Luschny, Oct 23 2019
  • Mathematica
    m = 34; A[_] = 0;
    Do[A[x_] = x + x^2 + A[(x + x^2)^2] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 23 2019 *)
  • PARI
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+x^2+subst(A,x,(x+x^2)^2+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Jun 14 2012

Formula

a(1) = 1, a(2) = 2 and for n>2: a(n) = Sum_[n/4 <= m <= n/2] binomial(2m,n-2m)*a(m), John Moon, as quoted in Ruskey. - Jonathan Vos Post, Jun 17 2005.
G.f. satisfies: A(x) = x+x^2 + A((x+x^2)^2). - Paul D. Hanna, Jun 14 2012
Showing 1-4 of 4 results.