cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert H Barbour

Robert H Barbour's wiki page.

Robert H Barbour has authored 13 sequences. Here are the ten most recent ones:

A126979 a(n) = 24*n + 233.

Original entry on oeis.org

233, 257, 281, 305, 329, 353, 377, 401, 425, 449, 473, 497, 521, 545, 569, 593, 617, 641, 665, 689, 713, 737, 761, 785, 809, 833, 857, 881, 905, 929, 953, 977, 1001, 1025, 1049, 1073, 1097, 1121, 1145, 1169, 1193, 1217, 1241, 1265, 1289, 1313, 1337, 1361
Offset: 0

Author

Robert H Barbour, Mar 20 2007, Jun 12 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L45R135L45R135 from iteration 233 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the turn angle in degrees.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, 2000.
  • S. Wolfram, A New Kind of Science, 1st ed. Il.: Wolfram Media Inc., 2002.

Crossrefs

Cf. A031041, A017581, A126978, A126980. Has many terms in common with A031041.

Programs

  • GAP
    a:=[233, 257];; for n in [3..60] do a[n]:=2*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 28 2019
  • Magma
    I:=[233, 257]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // G. C. Greubel, May 28 2019
    
  • Mathematica
    Table[24*n + 233, {n, 0, 60}] (* Stefan Steinerberger, Jun 17 2007 *)
    LinearRecurrence[{2,-1}, {233,257}, 60] (* G. C. Greubel, May 28 2019 *)
  • PARI
    my(x='x+O('x^60)); Vec((233-209*x)/(1-x)^2) \\ G. C. Greubel, May 28 2019
    
  • Sage
    ((233-209*x)/(1-x)^2).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
    

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: (233 - 209*x)/(1 - x)^2. (End)
E.g.f.: (233 + 24*x)*exp(x). - G. C. Greubel, May 28 2019

Extensions

More terms from Stefan Steinerberger, Jun 17 2007

A126980 a(n) = 14*n + 47.

Original entry on oeis.org

47, 61, 75, 89, 103, 117, 131, 145, 159, 173, 187, 201, 215, 229, 243, 257, 271, 285, 299, 313, 327, 341, 355, 369, 383, 397, 411, 425, 439, 453, 467, 481, 495, 509, 523, 537, 551, 565, 579, 593, 607, 621, 635, 649, 663, 677, 691, 705, 719, 733, 747
Offset: 0

Author

Robert H Barbour, Mar 20 2007, Jun 12 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L90R135L90R135 from iteration 47 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the turn angle (in degrees) at each iteration.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, 2000.
  • S. Wolfram, A New Kind of Science, 1st ed. Il.: Wolfram Media Inc., 2002.

Crossrefs

Programs

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: (-33*x + 47)/(x - 1)^2. (End)
E.g.f.: (47 + 14*x)*exp(x). - G. C. Greubel, May 30 2016

Extensions

More terms from Stefan Steinerberger and Diana L. Mecum, Jun 17 2007

A127547 a(n) = 13*n + 4.

Original entry on oeis.org

4, 17, 30, 43, 56, 69, 82, 95, 108, 121, 134, 147, 160, 173, 186, 199, 212, 225, 238, 251, 264, 277, 290, 303, 316, 329, 342, 355, 368, 381, 394, 407, 420, 433, 446, 459, 472, 485, 498, 511, 524, 537, 550, 563, 576, 589, 602, 615, 628, 641, 654, 667, 680, 693, 706, 719
Offset: 0

Author

Robert H Barbour, Apr 01 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L90R90L45R45 from iteration 4 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the size of the turn (in degrees) at each iteration.
Ant Farm algorithm available from Robert H Barbour.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, pp. 80-107, 2000.

Crossrefs

A subsequence of A092464.
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), this sequence (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

From Elmo R. Oliveira, Mar 21 2024: (Start)
G.f.: (4+9*x)/(1-x)^2.
E.g.f.: (4 + 13*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

Extensions

Edited by N. J. A. Sloane, May 10 2007

A126978 a(n) = 104*n + 9977.

Original entry on oeis.org

9977, 10081, 10185, 10289, 10393, 10497, 10601, 10705, 10809, 10913, 11017, 11121, 11225, 11329, 11433, 11537, 11641, 11745, 11849, 11953, 12057, 12161, 12265, 12369, 12473, 12577, 12681, 12785, 12889, 12993, 13097, 13201, 13305, 13409, 13513, 13617, 13721, 13825
Offset: 0

Author

Robert H Barbour, Mar 20 2007, Jun 12 2007

Keywords

Comments

Langton's Ant Superhighway, the start point (9977th iteration, J. Propp) and the period length for the Superhighway (104).

Crossrefs

Programs

Formula

a(0)=9977, a(1)=10081, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, Dec 16 2011
G.f.: (9977 - 9873*x)/(1-x)^2. - Vincenzo Librandi, Sep 10 2015
E.g.f.: exp(x)*(9977 + 104*x). - Elmo R. Oliveira, Dec 08 2024

A106624 Expansion of g.f.: (1 - x^2 + x^3)/((1-x^2)*(1-2*x^2)).

Original entry on oeis.org

1, 0, 2, 1, 4, 3, 8, 7, 16, 15, 32, 31, 64, 63, 128, 127, 256, 255, 512, 511, 1024, 1023, 2048, 2047, 4096, 4095, 8192, 8191, 16384, 16383, 32768, 32767, 65536, 65535, 131072, 131071, 262144, 262143, 524288, 524287, 1048576, 1048575, 2097152
Offset: 0

Author

Robert H Barbour, May 10 2005

Keywords

Comments

Cumulative column frequency of occurrence of 0's and 1's iterated in a binary tree where each node in the tree holds a value of 0 or 1, beginning with a count of 1.

References

  • Douglas Comer, Ubiquitous B-Tree, ACM Computing Surveys (CSUR), (1979), Volume 11 Issue 2.
  • Huffman, D. A., A method for the construction of minimum redundancy codes, Proc. IRE 40 (1951), 1098-1101.
  • Knuth, D. E., Dynamic Huffman coding. J. Algorithms 6 (1985), 163-180.

Crossrefs

Cf. A016116, A014535, A037026, A058518 - A058521, A000079 (bisection), A000225 (bisection).

Programs

  • Magma
    [2^Floor(n/2) + Floor((-1)^n - 1)/2: n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
    
  • Maple
    A106624 := proc(N)
        2^floor(n/2)+((-1)^n-1)/2 ;
    end proc:
    seq(A106624(n),n=0..20) ; # R. J. Mathar, Apr 14 2018
  • Mathematica
    Table[2^Floor[n/2] +Floor[(-1)^n-1]/2, {n,0,50}] (* G. C. Greubel, Feb 19 2019 *)
  • PARI
    vector(50,n, n--; 2^floor(n/2) +floor((-1)^n-1)/2) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [2^floor(n/2) +floor((-1)^n-1)/2 for n in (0..50)] # G. C. Greubel, Feb 19 2019

Formula

a(n) = 2^floor(n/2) + floor((-1)^n - 1)/2. - N. J. A. Sloane, May 15 2005

Extensions

New definition from N. J. A. Sloane, May 15 2008
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A108717 An erroneous sequence.

Original entry on oeis.org

11111111, 11111112, 11111212, 11111222, 11111212, 11121222, 11122222, 11122221
Offset: 0

Author

Robert H Barbour, Jun 20 2005

Keywords

Comments

Old name was: A model of LQTL "possible world lines" as a balanced binary tree with four successors (S4S). Each path through the tree creates a unique "word" describing the linked nodes. Four iterations generate the sequence which is extensible. Qubits mapped to a balanced binary tree.
For this sequence qubits have been represented as 11, 12, 21, 22, rather than the more common 00, 01, 11, 10. With the latter encoding the sequence would be 00000000, 00000001, 00000101, 00000111, 00000101, 00010111, 00011111, 00011110.

A102369 Intervals between successive arrivals of Langton's Ant at the origin.

Original entry on oeis.org

4, 4, 8, 36, 8, 36, 44, 44, 92, 92, 8, 8, 8, 8, 36, 8, 36, 184, 4, 2752, 732, 8, 2016, 596, 1284, 4, 4, 4, 8
Offset: 0

Author

Robert H Barbour, Feb 22 2005, corrected Feb 27 2005

Keywords

Comments

Ant Farm algorithm available from Robert H Barbour.
First differences of A102358. - Felix Fröhlich, Jul 26 2016

References

  • Christopher G. Langton et al., (1990) Artificial Life II. Addison-Wesley, Reading, MA., USA

Crossrefs

A102358 Finite sequence of iterations at which Langton's Ant passes through the origin.

Original entry on oeis.org

0, 4, 8, 16, 52, 60, 96, 140, 184, 276, 368, 376, 384, 392, 428, 436, 472, 656, 660, 3412, 4144, 4152, 6168, 6764, 8048, 8052, 8056, 8060, 8068
Offset: 1

Author

Robert H Barbour, Feb 21 2005, corrected Feb 27 2005

Keywords

Comments

Ant Farm algorithm available from bbarbour(AT)unitec.ac.nz.
Numbers n such that A274369(n) = A274370(n) = 0. - Felix Fröhlich, Jul 26 2016

References

  • Christopher G. Langton et al., (1990) Artificial Life II. Addison-Wesley, Reading, MA., USA

Crossrefs

A102110 Iterations during which LQTL cellular automaton passes through the origin.

Original entry on oeis.org

4, 8, 12, 28, 32, 36, 40, 56, 60, 64, 68, 72, 76, 116, 120, 136, 140, 144, 148, 152, 164, 168, 172, 180, 184, 224, 228, 232, 236, 240, 244, 332, 336, 376, 380, 384, 388, 392, 396, 412, 416, 420, 424, 440, 444, 448, 452, 456, 460, 500, 504, 592, 596, 600, 604
Offset: 1

Author

Robert H Barbour, Feb 14 2005

Keywords

Crossrefs

Cumulative sums of A102127.

Extensions

Terms a(19) and beyond from Andrey Zabolotskiy, Jan 06 2023

A099423 Lean quaternary temporal logic [LQTL] cumulative column frequencies of LQTL logic in A094266.

Original entry on oeis.org

1, 0, 0, 0, 2, 1, 0, 0, 3, 3, 1, 0, 4, 6, 4, 1, 6, 10, 10, 5, 12, 16, 20, 15, 28, 28, 36, 35, 64, 56, 64, 71, 136, 120, 120, 135, 272, 256, 240, 255, 528, 528, 496, 495, 1024, 1056, 1024, 991, 2016, 2080, 2080, 2015, 4032, 4096, 4160, 4095, 8128, 8128, 8256, 8255
Offset: 0

Author

Robert H Barbour, Nov 17 2004; corrected Jun 10 2005

Keywords

Comments

Appears to satisfy the recurrence: a(n) = 5*a(n-4) - 10*a(n-8) + 10*a(n-12) - 4*a(n-16). - Chai Wah Wu, May 25 2016
This is a table read by rows of length 4. Every row is formed from the corresponding row of the table A094266 according to the rule: a, b, c, d -> b, c, d, a-1. - Andrey Zabolotskiy, Jan 06 2023

Crossrefs

Cf. A094266 (first differences row-wise).