cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090731 a(n) = 23a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 23.

Original entry on oeis.org

2, 23, 527, 12098, 277727, 6375623, 146361602, 3359941223, 77132286527, 1770682648898, 40648568638127, 933146396028023, 21421718540006402, 491766380024119223, 11289205022014735727, 259159949126314802498
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004

Keywords

Comments

A Chebyshev T-sequence with Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 21*(5*b)^2 =+4 with companion sequence b(n)=A097778(n-1), n>=1; b(0):=0.

Examples

			(x;y) = (0;2), (23;1), (527;23), (12098;528), ... give the
nonnegative integer solutions to x^2 - 21*(5*y)^2 = 4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 21*(5*A097778(n-1))^2), n>=1.
Cf. A077428, A078355 (Pell +4 equations).

Programs

  • Mathematica
    a[0] = 2; a[1] = 23; a[n_] := 23a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{23,-1},{2,23},30] (* Harvey P. Dale, Feb 20 2012 *)
  • Sage
    [lucas_number2(n,23,1) for n in range(0,20)] # Zerinvary Lajos, Jun 26 2008

Formula

a(n) = S(n, 23) - S(n-2, 23) = 2*T(n, 23/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 23)=A097778(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (23+5*sqrt(21))/2 and am := (23-5*sqrt(21))/2.
G.f.: (2-23*x)/(1-23*x+x^2).

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Sep 10 2004

A087619 a(n) = 137*a(n-1) + a(n-2), with a(0) = 2 and a(1) = 137.

Original entry on oeis.org

2, 137, 18771, 2571764, 352350439, 48274581907, 6613970071698, 906162174404533, 124150831863492719, 17009570127472907036, 2330435258295651756651, 319286639956631763568223
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 25 2003

Keywords

Comments

a(n+1)/a(n) converges to (137+sqrt(18773))/2 = 137.00729888121410965...
a(0)/a(1) = 2/137;
a(1)/a(2) = 137/18771;
a(2)/a(3) = 18771/2571764;
a(3)/a(4) = 2571764/352350439; ... etc.
Lim_{n->infinity} a(n)/a(n+1) = 0.00729888121410965... = 2/(137+sqrt(18773)) = (sqrt(18773)-137)/2.

Crossrefs

Formula

a(n) = ((137+sqrt(18773))/2)^n + ((137-sqrt(18773))/2)^n.
(a(n))^2 = a(2*n)-2 if n = 1, 3, 5, ..., (a(n))^2 = a(2n) + 2 if n = 2, 4, 6, ...
G.f.: (2-137*x)/(1-137*x-x^2). - Philippe Deléham, Nov 23 2008
Showing 1-2 of 2 results.