cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037096 Periodic vertical binary vectors computed for powers of 3: a(n) = Sum_{k=0 .. (2^n)-1} (floor((3^k)/(2^n)) mod 2) * 2^k.

Original entry on oeis.org

1, 2, 0, 204, 30840, 3743473440, 400814250895866480, 192435610587299441243182587501623263200, 2911899996313975217187797869354128351340558818020188112521784134070351919360
Offset: 0

Views

Author

Antti Karttunen, Jan 29 1999

Keywords

Comments

This sequence can be also computed with a recurrence that does not explicitly refer to 3^n. See the C program.
Conjecture: For n >= 3, each term a(n), when considered as a GF(2)[X] polynomial, is divisible by the GF(2)[X] polynomial (x + 1) ^ A055010(n-1). If this holds, then for n >= 3, a(n) = A048720(A136386(n), A048723(3,A055010(n-1))).

Examples

			When powers of 3 are written in binary (see A004656), under each other as:
  000000000001 (1)
  000000000011 (3)
  000000001001 (9)
  000000011011 (27)
  000001010001 (81)
  000011110011 (243)
  001011011001 (729)
  100010001011 (2187)
it can be seen that the bits in the n-th column from the right can be arranged in periods of 2^n: 1, 2, 4, 8, ... This sequence is formed from those bits: 1, is binary for 1, thus a(0) = 1. 01, reversed is 10, which is binary for 2, thus a(1) = 2, 0000 is binary for 0, thus a(2)=0, 000110011, reversed is 11001100 = A007088(204), thus a(3) = 204.
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.

Crossrefs

Cf. A036284, A037095, A037097, A136386 for related sequences.
Cf. also A004642, A265209, A265210 (for 2^n written in base 3).

Programs

  • Maple
    a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n))-1);
    bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);

Formula

a(n) = Sum_{k=0 .. A000225(n)} (floor(A000244(k)/(2^n)) mod 2) * 2^k.
Other identities and observations:
For n >= 2, a(n) = A000215(n-1)*A037097(n) = A048720(A037097(n), A048723(3, A000079(n-1))).

Extensions

Entry revised by Antti Karttunen, Dec 29 2007
Name changed and the example corrected by Antti Karttunen, Dec 05 2015