cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037124 Numbers that contain only one nonzero digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jun 15 1998

Keywords

Comments

Starting with 1: next greater number not containing the highest digit (see also A098395). - Reinhard Zumkeller, Oct 31 2004
A061116 is a subsequence. - Reinhard Zumkeller, Mar 26 2008
Subsequence of A193460. - Reinhard Zumkeller, Jul 26 2011

Crossrefs

Programs

  • Haskell
    a037124 n = a037124_list !! (n-1)
    a037124_list = f [1..9] where f (x:xs) = x : f (xs ++ [10*x])
    -- Reinhard Zumkeller, May 03 2011
    
  • Magma
    [((n mod 9)+1) * 10^Floor(n/9): n in [0..50]]; // Vincenzo Librandi, Nov 11 2014
    
  • Mathematica
    Table[(10^Floor[(n - 1)/9])*(n - 9*Floor[(n - 1)/9]), {n, 1, 50}] (* José de Jesús Camacho Medina, Nov 10 2014 *)
    Array[(Mod[#, 9] + 1) * 10^Floor[#/9] &, 50, 0] (* Paolo Xausa, Oct 10 2024 *)
  • PARI
    is(n)=n>0 && n/10^valuation(n,10)<10 \\ Charles R Greathouse IV, Jan 29 2017
    
  • Python
    def A037124(n):
        a, b = divmod(n-1,9)
        return 10**a*(b+1) # Chai Wah Wu, Oct 16 2024

Formula

a(n) = (((n - 1) mod 9) + 1) * 10^floor((n - 1)/9). E.g., a(40) = ((39 mod 9) + 1) * 10^floor(39/9) = (3 + 1) * 10^4 = 40000. - Carl R. White, Jan 08 2004
a(n) = A051885(n-1) + 1. - Reinhard Zumkeller, Jan 03 2008, Jul 10 2011
A138707(a(n)) = A000005(a(n)). - Reinhard Zumkeller, Mar 26 2008
From Reinhard Zumkeller, May 26 2008: (Start)
a(n+1) = a(n) + a(n - n mod 9).
a(n) = A140740(n+9, 9). (End)
A055640(a(n)) = 1. - Reinhard Zumkeller, May 03 2011
A193459(a(n)) = A000005(a(n)). - Reinhard Zumkeller, Jul 26 2011
Sum_{n>0} 1/a(n)^s = (10^s)*(zeta(s) - zeta(s,10))/(10^s-1), with (s>1). - Enrique Pérez Herrero, Feb 05 2013
a(n) = (10^floor((n - 1)/9))*(n - 9*floor((n - 1)/9)). - José de Jesús Camacho Medina, Nov 10 2014
From Chai Wah Wu, May 28 2016: (Start)
a(n) = 10*a(n-9).
G.f.: x*(9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(1 - 10*x^9). (End)
a(n) ≍ 1.2589...^n, where the constant is A011279. (f ≍ g when f << g and g << f, that is, there are absolute constants c,C > 0 such that for all large n, |f(n)| <= c|g(n)| and |g(n)| <= C|f(n)|.) - Charles R Greathouse IV, Mar 11 2021
Sum_{n>=1} 1/a(n) = 7129/2268. - Amiram Eldar, Jan 21 2022