A037124 Numbers that contain only one nonzero digit.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Michael Maltenfort, Characterizing Additive Systems, The American Mathematical Monthly, Vol. 124, No. 2 (2017), pp. 132-148.
- Index entries for 10-automatic sequences.
Crossrefs
Programs
-
Haskell
a037124 n = a037124_list !! (n-1) a037124_list = f [1..9] where f (x:xs) = x : f (xs ++ [10*x]) -- Reinhard Zumkeller, May 03 2011
-
Magma
[((n mod 9)+1) * 10^Floor(n/9): n in [0..50]]; // Vincenzo Librandi, Nov 11 2014
-
Mathematica
Table[(10^Floor[(n - 1)/9])*(n - 9*Floor[(n - 1)/9]), {n, 1, 50}] (* José de Jesús Camacho Medina, Nov 10 2014 *) Array[(Mod[#, 9] + 1) * 10^Floor[#/9] &, 50, 0] (* Paolo Xausa, Oct 10 2024 *)
-
PARI
is(n)=n>0 && n/10^valuation(n,10)<10 \\ Charles R Greathouse IV, Jan 29 2017
-
Python
def A037124(n): a, b = divmod(n-1,9) return 10**a*(b+1) # Chai Wah Wu, Oct 16 2024
Formula
a(n) = (((n - 1) mod 9) + 1) * 10^floor((n - 1)/9). E.g., a(40) = ((39 mod 9) + 1) * 10^floor(39/9) = (3 + 1) * 10^4 = 40000. - Carl R. White, Jan 08 2004
a(n) = A051885(n-1) + 1. - Reinhard Zumkeller, Jan 03 2008, Jul 10 2011
From Reinhard Zumkeller, May 26 2008: (Start)
a(n+1) = a(n) + a(n - n mod 9).
a(n) = A140740(n+9, 9). (End)
A055640(a(n)) = 1. - Reinhard Zumkeller, May 03 2011
Sum_{n>0} 1/a(n)^s = (10^s)*(zeta(s) - zeta(s,10))/(10^s-1), with (s>1). - Enrique Pérez Herrero, Feb 05 2013
a(n) = (10^floor((n - 1)/9))*(n - 9*floor((n - 1)/9)). - José de Jesús Camacho Medina, Nov 10 2014
From Chai Wah Wu, May 28 2016: (Start)
a(n) = 10*a(n-9).
G.f.: x*(9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(1 - 10*x^9). (End)
a(n) ≍ 1.2589...^n, where the constant is A011279. (f ≍ g when f << g and g << f, that is, there are absolute constants c,C > 0 such that for all large n, |f(n)| <= c|g(n)| and |g(n)| <= C|f(n)|.) - Charles R Greathouse IV, Mar 11 2021
Sum_{n>=1} 1/a(n) = 7129/2268. - Amiram Eldar, Jan 21 2022
Comments