cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248807 Range of A037214 = coefficients of (sum_{n>0} n*X^(n^2))^2.

Original entry on oeis.org

0, 1, 4, 6, 8, 9, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 38, 39, 40, 42, 48, 49, 50, 52, 54, 58, 60, 64, 68, 70, 72, 78, 80, 81, 88, 90, 96, 98, 102, 108, 110, 112, 118, 120, 121, 122, 128
Offset: 1

Views

Author

M. F. Hasler, Oct 14 2014

Keywords

Comments

Also: Numbers of the form sum(xy ; x,y>0 and x^2+y^2=n) for some fixed n.

Crossrefs

Cf. A037214.

A037215 Expansion of ( Sum_{k>=0} k*q^(k^2) )^3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 6, 0, 0, 12, 0, 9, 8, 0, 36, 0, 0, 36, 12, 27, 0, 48, 54, 0, 48, 0, 72, 42, 0, 144, 60, 0, 0, 108, 108, 90, 96, 0, 198, 0, 0, 216, 120, 135, 72, 240, 108, 0, 64, 216, 360, 96, 0, 144, 396, 0, 288, 324, 0, 351, 0, 432, 432, 0, 0, 360, 492, 189, 288, 432, 540, 0, 96, 108, 648, 335, 216, 1008, 420, 0, 0, 852, 216, 657
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

More terms from Seiichi Manyama, Sep 14 2021

A037216 Expansion of ( Sum_{k>=0} k*q^(k^2) )^4.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 8, 0, 0, 24, 0, 12, 32, 0, 72, 16, 0, 144, 16, 54, 96, 96, 216, 0, 192, 216, 144, 256, 0, 576, 336, 0, 576, 336, 432, 261, 544, 864, 744, 384, 0, 1440, 672, 540, 1440, 960, 1296, 192, 1216, 1728, 1440, 1230, 864, 3168, 1416, 0, 1920, 3192, 2160, 2304, 2144, 1728, 3816, 256, 3456, 5328, 1568
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

More terms from Seiichi Manyama, Sep 14 2021

A037217 Expansion of ( Sum_{k>=0} k*q^(k^2) )^8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 16, 0, 0, 112, 0, 24, 448, 0, 336, 1120, 0, 2016, 1824, 252, 6720, 2240, 3024, 13440, 3712, 15120, 16800, 10768, 40320, 18816, 33600, 60480, 43392, 85792, 54432, 114030, 151872, 76608, 216768, 174336, 241920, 324240, 178304, 505008, 443520, 380800
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

More terms from Seiichi Manyama, Sep 14 2021

A347801 Expansion of ( Sum_{k>=0} k^2 * q^(k^2) )^2.

Original entry on oeis.org

0, 0, 1, 0, 0, 8, 0, 0, 16, 0, 18, 0, 0, 72, 0, 0, 0, 32, 81, 0, 128, 0, 0, 0, 0, 288, 50, 0, 0, 200, 0, 0, 256, 0, 450, 0, 0, 72, 0, 0, 288, 800, 0, 0, 0, 648, 0, 0, 0, 0, 723, 0, 1152, 392, 0, 0, 0, 0, 882, 0, 0, 1800, 0, 0, 0, 1696, 0, 0, 512, 0, 0, 0, 1296, 1152, 2450, 0, 0, 0, 0, 0, 2048, 0, 162, 0, 0, 4176, 0, 0, 0, 3200, 1458
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, (i^2+j^2==n)*(i*j)^2));
    
  • PARI
    my(N=99, x='x+O('x^N)); concat([0, 0], Vec(sum(k=0, sqrtint(N), k^2*x^k^2)^2))

Formula

a(n) is sum of i^2 * j^2 for positive integers i,j such that i^2+j^2=n.
Showing 1-5 of 5 results.