cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A037214 Expansion of ( Sum_{k>=0} k*q^(k^2) )^2.

Original entry on oeis.org

0, 0, 1, 0, 0, 4, 0, 0, 4, 0, 6, 0, 0, 12, 0, 0, 0, 8, 9, 0, 16, 0, 0, 0, 0, 24, 10, 0, 0, 20, 0, 0, 16, 0, 30, 0, 0, 12, 0, 0, 24, 40, 0, 0, 0, 36, 0, 0, 0, 0, 39, 0, 48, 28, 0, 0, 0, 0, 42, 0, 0, 60, 0, 0, 0, 72, 0, 0, 32, 0, 0, 0, 36, 48, 70, 0, 0, 0, 0, 0, 64, 0, 18, 0, 0, 120, 0, 0, 0, 80, 54, 0, 0, 0, 0, 0, 0, 72, 49
Offset: 0

Views

Author

Keywords

Comments

The range of the sequence is {0, 1, 4, 6, 8, 9, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 38, 39, 40, ...}, cf. A248807. - M. F. Hasler, Oct 14 2014

Crossrefs

Programs

  • Maple
    seq(  add(T[1]*sqrt(T[2]), T in select(T->issqr(T[2]),[seq([x,n-x**2],x=1..n)]) )  , n=1..50); # Cristóbal Camarero, Oct 03 2014
  • PARI
    N=66; q='q+O('q^N); concat([0,0], Vec( sum(n=0,N, n*q^(n^2))^2 )) \\ Joerg Arndt, Oct 13 2014
    
  • PARI
    A037214(n)={my(y);sum(x=1,sqrtint(n\2),if(issquare(n-x^2,&y),x*y))*2-if(n%2==0 && issquare(n\2),n\2)} \\ M. F. Hasler, Oct 14 2014

Formula

a(n) = sum x*y for integers x,y such that x^2+y^2=n and x>0,y>=0. - Cristóbal Camarero, Oct 03 2014
If a(n)>0, then a(n)>=2*sqrt(n-1) except for a(2)=1 and a(8)=4. Proof: The extremal values a nonzero term x*y in the above sum can have is x=1, y=sqrt(n-1) in which case it occurs a second time with x,y swapped (except for x=y=1), and x=y=sqrt(n/2) in which case it may occur only once, but x*y=n/2 is larger than 2*sqrt(n-1) for n>=15. - M. F. Hasler, Oct 14 2014

A037216 Expansion of ( Sum_{k>=0} k*q^(k^2) )^4.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 8, 0, 0, 24, 0, 12, 32, 0, 72, 16, 0, 144, 16, 54, 96, 96, 216, 0, 192, 216, 144, 256, 0, 576, 336, 0, 576, 336, 432, 261, 544, 864, 744, 384, 0, 1440, 672, 540, 1440, 960, 1296, 192, 1216, 1728, 1440, 1230, 864, 3168, 1416, 0, 1920, 3192, 2160, 2304, 2144, 1728, 3816, 256, 3456, 5328, 1568
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

More terms from Seiichi Manyama, Sep 14 2021

A037217 Expansion of ( Sum_{k>=0} k*q^(k^2) )^8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 16, 0, 0, 112, 0, 24, 448, 0, 336, 1120, 0, 2016, 1824, 252, 6720, 2240, 3024, 13440, 3712, 15120, 16800, 10768, 40320, 18816, 33600, 60480, 43392, 85792, 54432, 114030, 151872, 76608, 216768, 174336, 241920, 324240, 178304, 505008, 443520, 380800
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

More terms from Seiichi Manyama, Sep 14 2021

A347802 Expansion of ( Sum_{k>=0} k^2 * q^(k^2) )^3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 12, 0, 0, 48, 0, 27, 64, 0, 216, 0, 0, 432, 48, 243, 0, 384, 972, 0, 768, 0, 864, 804, 0, 3456, 600, 0, 0, 1968, 3888, 1350, 3072, 0, 5508, 0, 0, 7776, 2400, 6075, 1728, 9600, 1944, 0, 4096, 7776, 21600, 2022, 0, 3456, 17424, 0, 13824, 21552, 0, 19521, 0, 31104, 15984, 0, 0, 21600, 34896, 11907
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, (i^2+j^2+k^2==n)*(i*j*k)^2)));
    
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=0, sqrtint(N), k^2*x^k^2)^3))

Formula

a(n) is sum of i^2 * j^2 * k^2 for positive integers i,j,k such that i^2+j^2+k^2=n.
Showing 1-4 of 4 results.