cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037254 Triangle read by rows: T(n,k) (n >= 1, 1 <= k< = n) gives number of non-distorting tie-avoiding integer vote weights.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 5, 6, 7, 6, 9, 11, 12, 13, 11, 17, 20, 22, 23, 24, 22, 33, 39, 42, 44, 45, 46, 42, 64, 75, 81, 84, 86, 87, 88, 84, 126, 148, 159, 165, 168, 170, 171, 172, 165, 249, 291, 313, 324, 330, 333, 335, 336, 337, 330, 495, 579, 621, 643, 654, 660, 663, 665
Offset: 1

Views

Author

Keywords

Comments

T(n,1) = T(n,floor(n/2)+1) = A002083(n+2). - Reinhard Zumkeller, Nov 18 2012

Examples

			Triangle:
  1;
  1,  2;
  2,  3,  4;
  3,  5,  6,  7;
  6,  9, 11, 12, 13;
  ...
		

References

  • Author?, Solution to Board of Directors Problem, J. Rec. Math., 9 (No. 3, 1977), 240.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.

Crossrefs

Row sums give A005254. A002083 is a column. See also A005318, A096858.

Programs

  • Haskell
    a037254 n k = a037254_tabl !! (n-1) !! (k-1)
    a037254_row n = a037254_tabl !! (n-1)
    a037254_tabl = map fst $ iterate f ([1], drop 2 a002083_list) where
       f (row, (x:xs)) = (map (+ x) (0 : row), xs)
    -- Reinhard Zumkeller, Nov 18 2012
    
  • Mathematica
    a[1, 1] = 1; a[n_, 1] := a[n, 1] = a[n - 1, Floor[(n + 1)/2]]; a[n_, k_ /; k > 1] := a[n, k] = a[n, 1] + a[n - 1, k - 1]; A037254 = Flatten[ Table[ a[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Apr 03 2012, after given recurrence *)
  • Python
    def T(n, k):
        if k==1:
            if n==1: return 1
            else: return T(n - 1, (n + 1)//2)
        return T(n, 1) + T(n - 1, k - 1)
    for n in range(1, 12): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 03 2017

Formula

T(1,1) = 1;
T(n,1) = T(n-1, floor((n+1)/2));
T(n,k) = T(n,1) + T(n-1,k-1) for k > 1.

Extensions

More terms from (and formula corrected by) James Sellers, Feb 04 2000