A037254 Triangle read by rows: T(n,k) (n >= 1, 1 <= k< = n) gives number of non-distorting tie-avoiding integer vote weights.
1, 1, 2, 2, 3, 4, 3, 5, 6, 7, 6, 9, 11, 12, 13, 11, 17, 20, 22, 23, 24, 22, 33, 39, 42, 44, 45, 46, 42, 64, 75, 81, 84, 86, 87, 88, 84, 126, 148, 159, 165, 168, 170, 171, 172, 165, 249, 291, 313, 324, 330, 333, 335, 336, 337, 330, 495, 579, 621, 643, 654, 660, 663, 665
Offset: 1
Examples
Triangle: 1; 1, 2; 2, 3, 4; 3, 5, 6, 7; 6, 9, 11, 12, 13; ...
References
- Author?, Solution to Board of Directors Problem, J. Rec. Math., 9 (No. 3, 1977), 240.
- T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
Links
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
- M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 122-123.
- G. Kreweras, Sur quelques problèmes relatifs au vote pondéré, [Some problems of weighted voting], Math. Sci. Humaines No. 84 (1983), 45-63.
- B. E. Wynne & N. J. A. Sloane, Correspondence, 1976-84
- B. E. Wynne & T. V. Narayana, Tournament configuration, weighted voting, and partitioned catalans, Preprint.
- Bayard Edmund Wynne, and T. V. Narayana, Tournament configuration and weighted voting, Cahiers du bureau universitaire de recherche opérationnelle, 36 (1981): 75-78.
- Solution to Board of Directors Problem, J. Rec. Math., 9 (No. 3, 1977), 240. (Annotated scanned copy)
Crossrefs
Programs
-
Haskell
a037254 n k = a037254_tabl !! (n-1) !! (k-1) a037254_row n = a037254_tabl !! (n-1) a037254_tabl = map fst $ iterate f ([1], drop 2 a002083_list) where f (row, (x:xs)) = (map (+ x) (0 : row), xs) -- Reinhard Zumkeller, Nov 18 2012
-
Mathematica
a[1, 1] = 1; a[n_, 1] := a[n, 1] = a[n - 1, Floor[(n + 1)/2]]; a[n_, k_ /; k > 1] := a[n, k] = a[n, 1] + a[n - 1, k - 1]; A037254 = Flatten[ Table[ a[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Apr 03 2012, after given recurrence *)
-
Python
def T(n, k): if k==1: if n==1: return 1 else: return T(n - 1, (n + 1)//2) return T(n, 1) + T(n - 1, k - 1) for n in range(1, 12): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 03 2017
Formula
T(1,1) = 1;
T(n,1) = T(n-1, floor((n+1)/2));
T(n,k) = T(n,1) + T(n-1,k-1) for k > 1.
Extensions
More terms from (and formula corrected by) James Sellers, Feb 04 2000
Comments