A037271 Number of steps to reach a prime under "replace n with concatenation of its prime factors" when applied to n-th composite number, or -1 if no such number exists.
2, 1, 13, 2, 4, 1, 5, 4, 4, 1, 15, 1, 1, 2, 3, 4, 4, 1, 2, 2, 1, 5, 3, 2, 2, 1, 9, 2, 9, 6, 1, 15
Offset: 1
Examples
Starting with 14 (the seventh composite number) we get 14=2*7, 27=3*3*3, 333=3*3*37, 3337=47*71, 4771=13*367, 13367 is prime; so a(7)=5.
Links
- Patrick De Geest, Home Primes
- M. Herman and J. Schiffman, Investigating home primes and their families, Math. Teacher, 107 (No. 8, 2014), 606-614.
- Eric Weisstein's World of Mathematics, Home Prime
Programs
-
Haskell
a037271 = length . takeWhile ((== 0) . a010051'') . iterate a037276 . a002808 -- Reinhard Zumkeller, Apr 03 2012
-
Mathematica
maxComposite = 49; maxIter = 40; concat[n_] := FromDigits[ Flatten[ IntegerDigits /@ Flatten[ Apply[ Table, {#[[1]], {#[[2]]}} & /@ FactorInteger[n], {1}]]]]; composites = Select[ Range[2, maxComposite], ! PrimeQ[#] &]; a[n_] := ( lst = NestWhileList[ concat, composites[[n]], ! PrimeQ[#] &, 1, maxIter]; If[PrimeQ[ Last[lst]], Length[lst] - 1, - 1]); Table[a[n], {n, 1, Length[composites]}] (* Jean-François Alcover, Jul 10 2012 *)
Comments