A037308 Numbers whose base-2 and base-10 expansions have the same digit sum.
0, 1, 20, 21, 122, 123, 202, 203, 222, 223, 230, 231, 302, 303, 410, 411, 502, 503, 1130, 1131, 1150, 1151, 1202, 1203, 1212, 1213, 1230, 1231, 1300, 1301, 1402, 1403, 1502, 1503, 1510, 1511, 2006, 2007, 2032, 2033, 2102, 2103, 2200, 2201, 3006, 3007, 3012
Offset: 1
Examples
122 is a member, since digital-sum_2(122) = 5 = digital-sum_10(122).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 10000; # to get all elements up to N select(x -> (convert(convert(x,base,10),`+`)-convert(convert(x,base,2),`+`)=0), [$0..N]); # Robert Israel, Mar 25 2013
-
Mathematica
Select[Range[0, 5000], Total[IntegerDigits[#, 2]] == Total[IntegerDigits[#, 10]] &] (* Jean-François Alcover, Mar 07 2016 *)
-
PARI
is(n)=hammingweight(n)==sumdigits(n); \\ Charles R Greathouse IV, Sep 25 2012
-
Python
def ok(n): return sum(map(int, str(n))) == sum(map(int, bin(n)[2:])) print(list(filter(ok, range(3013)))) # Michael S. Branicky, Jun 20 2021
-
Sage
[n for n in (0..10000) if sum(n.digits(base=2)) == sum(n.digits(base=10))] # Freddy Barrera, Oct 12 2018
Formula
From Reinhard Zumkeller, Aug 06 2010: (Start)
A180018(a(n)) = 0. (End)
Extensions
Edited by N. J. A. Sloane Nov 29 2008 at the suggestion of Zak Seidov
Comments