A037577 Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
1, 8, 41, 208, 1041, 5208, 26041, 130208, 651041, 3255208, 16276041, 81380208, 406901041, 2034505208, 10172526041, 50862630208, 254313151041, 1271565755208, 6357828776041, 31789143880208, 158945719401041, 794728597005208
Offset: 1
Examples
a(1) = (5-1)/3 = 1, a(2) = (5^2-1)/3 = 8. - _Philippe Deléham_, Nov 15 2013
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,1,-5).
Programs
-
Mathematica
CoefficientList[Series[(3 x + 1)/((x - 1) (x + 1) (5 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 21 2013 *)
Formula
a(n) = (5^n - 2)/3 for n odd ; a(n) = (5^n - 1)/3 for n even. - Ctibor O. Zizka, Apr 15 2008
a(n) = floor(5^n/3). - Gary Detlefs, Sep 06 2010
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3). - Charles R Greathouse IV, Jan 15 2011
G.f.: x*(3*x+1) / ((x-1)*(x+1)*(5*x-1)). - Colin Barker, Dec 27 2012
Extensions
First formula corrected by Philippe Deléham, Nov 14 2013
Comments