cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037954 a(n) = binomial(n, floor((n-7)/2)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 9, 10, 55, 66, 286, 364, 1365, 1820, 6188, 8568, 27132, 38760, 116280, 170544, 490314, 735471, 2042975, 3124550, 8436285, 13123110, 34597290, 54627300, 141120525, 225792840
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n, Floor((n-7)/2)): n in [0..40]]; // G. C. Greubel, Jun 21 2022
    
  • Mathematica
    Table[Binomial[n,Floor[(n-7)/2]],{n,0,40}] (* Harvey P. Dale, Apr 15 2020 *)
  • SageMath
    [binomial(n, (n-7)//2) for n in (0..40)] # G. C. Greubel, Jun 21 2022

Formula

(n+8)*(n-7)*a(n) = 2*(n)*a(n-1) + 4*(n-1)*n*a(n-2). - R. J. Mathar, Jul 26 2015
From G. C. Greubel, Jun 21 2022: (Start)
G.f.: ((1 +x -8*x^2 -7*x^3 +20*x^4 +14*x^5 -16*x^6 -7*x^7 +2*x^8) - (1 +x -6*x^2 - 5*x^3 +10*x^4 +6*x^5 -4*x^6 -x^7)*sqrt(1-4*x^2))/(2*x^8*sqrt(1-4*x^2)).
E.g.f.: BesselI(7, 2*x) + BesselI(8, 2*x). (End)