cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037956 a(n) = binomial(n, floor((n-4)/2)).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 6, 7, 28, 36, 120, 165, 495, 715, 2002, 3003, 8008, 12376, 31824, 50388, 125970, 203490, 497420, 817190, 1961256, 3268760, 7726160, 13037895, 30421755, 51895935, 119759850, 206253075
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n, Floor((n-4)/2)): n in [0..40]]; // G. C. Greubel, Jun 20 2022
    
  • Maple
    seq(binomial(n,floor((n-4)/2)),n=0..50); # Robert Israel, Oct 28 2019
  • Mathematica
    Table[Binomial[n,Floor[(n-4)/2]],{n,0,40}] (* Harvey P. Dale, Mar 02 2015 *)
  • SageMath
    [binomial(n, (n-4)//2) for n in (0..40)] # G. C. Greubel, Jun 20 2022

Formula

E.g.f.: Bessel_I(4,2x) + Bessel_I(5,2x). - Paul Barry, Feb 28 2006
(n+5)*(n-4)*a(n) = -(n^2-3*n-20)*a(n-1) - (n^2-13*n-88)*a(n-2) + 2*(2*n+3)*(n-2)*a(n-3) +20*(n-2)*(n-3)*a(n-4). - R. J. Mathar, Nov 24 2012
From Robert Israel, Oct 28 2019: (Start)
G.f.: 16*x^4*(1+2*x+sqrt(1-4*x^2))/(sqrt(1-4*x^2)*(1+sqrt(1-4*x^2))^5).
Mathar's recurrence verified using the D.E. (4*x^4-x^2)*y'' + (16*x^3+2*x^2-2*x)*y' + (8*x^2+2*x+20)*y = 0 satisfied by the G.f. (End)