cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037957 a(n) = binomial(n, floor((n-6)/2)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 8, 9, 45, 55, 220, 286, 1001, 1365, 4368, 6188, 18564, 27132, 77520, 116280, 319770, 490314, 1307504, 2042975, 5311735, 8436285, 21474180, 34597290, 86493225, 141120525, 347373600
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n, Floor((n-6)/2)): n in [0..40]]; // G. C. Greubel, Jun 20 2022
    
  • Mathematica
    Table[Binomial[n,Floor[(n-6)/2]],{n,0,40}] (* Harvey P. Dale, May 16 2017 *)
  • PARI
    a(n)=binomial(n,n\2-3) \\ Charles R Greathouse IV, Oct 23 2023
  • SageMath
    [binomial(n, (n-6)//2) for n in (0..40)] # G. C. Greubel, Jun 20 2022
    

Formula

(n+7)*(n-6)*a(n) = 2*n*a(n-1) + 4*n*(n-1)*a(n-2). - R. J. Mathar, Jul 26 2015
From G. C. Greubel, Jun 20 2022: (Start)
G.f.: ((1 + x - 7*x^2 - 6*x^3 + 14*x^4 + 9*x^5 - 7*x^6 - 2*x^7) - (1 + x - 5*x^2 - 4*x^3 + 6*x^4 + 3*x^5 - x^6)*sqrt(1-4*x^2))/(2*x^7*sqrt(1-4*x^2)).
E.g.f.: BesselI(6, 2*x) + BesselI(7, 2*x). (End)