cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A036911 a(n) = (binomial(4*n, 2*n) + (-1)^n*binomial(2*n, n)^2)/2.

Original entry on oeis.org

1, 1, 53, 262, 8885, 60626, 1778966, 14168988, 383358645, 3355615450, 85990654178, 803232328548, 19780031677718, 193873026294052, 4629016098160220, 47101568276955512, 1096960888092571317, 11503661742608944170, 262435310495071434602
Offset: 0

Views

Author

Keywords

References

  • Identity (3.71) in H. W. Gould, Combinatorial Identities, Morgantown, 1972, page 30.

Crossrefs

Programs

  • Magma
    [(1/2)*((2*n+1)*Catalan(2*n) + (-1)^n*(n+1)^2*Catalan(n)^2): n in [0..30]]; // G. C. Greubel, Jun 22 2022
    
  • Mathematica
    Table[(Binomial[4n,2n]+(-1)^n Binomial[2n,n]^2)/2,{n,0,20}] (* Harvey P. Dale, May 22 2013 *)
  • SageMath
    b=binomial; [(1/2)*(b(4*n, 2*n) + (-1)^n*b(2*n, n)^2) for n in (0..30)] # G. C. Greubel, Jun 22 2022

Formula

a(n) = (1/2)*(binomial(4*n, 2*n) + (-1)^n*binomial(2*n, n)^2).
From G. C. Greubel, Jun 22 2022: (Start)
a(n) = Sum_{k=0..n} binomial(2*n, 2*k)^2.
a(n) = (1/2)*((2*n+1)*A000108(2*n) + (-1)^n*(n+1)^2*A000108(n)^2).
G.f.: (1/2)*( sqrt(1 + sqrt(1-16*x))/(sqrt(2)*sqrt(1-16*x)) + (2/Pi)*EllipticK(-16*x) ). (End)
Showing 1-1 of 1 results.