A038076 Number of rooted identity trees with 3-colored leaves.
3, 3, 6, 16, 46, 142, 461, 1542, 5278, 18417, 65218, 233816, 846938, 3094943, 11395715, 42237936, 157465847, 590075550, 2221391912, 8397223487, 31861406058, 121300625969, 463233477550, 1774034788166, 6811612470692, 26216538077715, 101125406981562
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..600
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> `if`(n<2, 3*n, b(n-1, n-1)): seq(a(n), n=1..35); # Alois P. Heinz, Aug 01 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<2, 3*n, b[n-1, n-1]]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
Formula
Shifts left under Weigh transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.0814589930714884560076189705..., c = 0.4583632659157592121544633778... . - Vaclav Kotesovec, Sep 06 2014
G.f. A(x) satisfies: A(x) = 2*x + x * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) / k ). - Ilya Gutkovskiy, May 19 2023