cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038076 Number of rooted identity trees with 3-colored leaves.

Original entry on oeis.org

3, 3, 6, 16, 46, 142, 461, 1542, 5278, 18417, 65218, 233816, 846938, 3094943, 11395715, 42237936, 157465847, 590075550, 2221391912, 8397223487, 31861406058, 121300625969, 463233477550, 1774034788166, 6811612470692, 26216538077715, 101125406981562
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, 3*n, b(n-1, n-1)):
    seq(a(n), n=1..35);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<2, 3*n, b[n-1, n-1]];
    Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

Shifts left under Weigh transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.0814589930714884560076189705..., c = 0.4583632659157592121544633778... . - Vaclav Kotesovec, Sep 06 2014
G.f. A(x) satisfies: A(x) = 2*x + x * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) / k ). - Ilya Gutkovskiy, May 19 2023