cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A038077 Number of rooted identity trees with 2-colored nodes.

Original entry on oeis.org

2, 4, 10, 36, 132, 532, 2222, 9584, 42248, 189776, 864830, 3989656, 18593424, 87413444, 414060796, 1974260912, 9467922870, 45638482068, 221001289714, 1074591477112, 5244497440468, 25681907242416, 126149132242490, 621386729646752, 3068748094479108
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Shifts left and halves under Weigh transform.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n=1, 2, 2*b((n-1)$2)):
    seq(a(n), n=1..40); # Alois P. Heinz, May 20 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n==1, 2, 2*b[n-1, n-1]];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

a(n) = 2 * A005753(n).

A038078 Number of identity trees with 2-colored nodes.

Original entry on oeis.org

1, 2, 1, 2, 6, 20, 69, 270, 1026, 4120, 16794, 70230, 298306, 1288912, 5642559, 25007756, 111998920, 506348902, 2308338456, 10602357346, 49026021552, 228085486580, 1067020210339, 5016982766202, 23698640081356, 112422573858292, 535414026652828, 2559204304109868
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2*b(i-1$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 1, 2*b(n-1$2) -2*add(b(j-1$2)*b(n-j-1$2)
            , j=1..n-1) -`if`(irem(n, 2, 'r')=0, b(r-1$2), 0)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Aug 02 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n-i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n==0, 1, 2*b[n-1, n-1] - 2*Sum[b[j-1, j-1]*b[n-j-1, n-j-1], {j, 1, n-1}] - If[Mod[n, 2]==0, r=n/2; b[r-1, r-1], 0]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

G.f.: B(x) - B^2(x)/2 - B(x^2)/2, where B(x) is g.f. for A038077.
a(n) ~ c * d^n / n^(5/2), where d = A246312 = 5.2490324912281705791649522161843092..., c = 0.356142078281568492877259973613... . - Vaclav Kotesovec, Sep 06 2014

A038079 Number of rooted identity trees with 3-colored nodes.

Original entry on oeis.org

3, 9, 36, 192, 1089, 6642, 42129, 275571, 1844028, 12567762, 86924745, 608612814, 4305284400, 30723593751, 220917003516, 1599013642359, 11641144003245, 85186969539435, 626245146267393, 4622806865390823, 34251800667936939, 254640579219212457
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Formula

Shifts left and divides by 3 under Weigh transform.
a(n) = 3 * A052757(n).
Showing 1-3 of 3 results.