cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052757 Number of rooted identity trees with n nodes and 3-colored non-root nodes.

Original entry on oeis.org

0, 1, 3, 12, 64, 363, 2214, 14043, 91857, 614676, 4189254, 28974915, 202870938, 1435094800, 10241197917, 73639001172, 533004547453, 3880381334415, 28395656513145, 208748382089131, 1540935621796941, 11417266889312313, 84880193073070819, 632976019285857201
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Examples

			a(3) = 12:
o  o  o  o  o  o  o  o  o    o      o      o
|  |  |  |  |  |  |  |  |   / \    / \    / \
1  1  1  2  2  2  3  3  3  1   2  1   3  2   3
|  |  |  |  |  |  |  |  |
1  2  3  1  2  3  1  2  3  - _Alois P. Heinz_, Feb 24 2015
		

Crossrefs

Cf. A038079.
Column k=3 of A255517.

Programs

  • Maple
    spec := [S,{S=Prod(B,B,B,Z),B=PowerSet(S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

a(n) ~ c * d^n / n^(3/2), where d = 7.969494030514425004826375511986491746399264355846412073489715938424..., c = 0.12982932099206082951153936270704832022771078... . - Vaclav Kotesovec, Feb 24 2015
From Ilya Gutkovskiy, Apr 13 2019: (Start)
G.f. A(x) satisfies: A(x) = x*exp(3*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^(3*a(n)). (End)

Extensions

New name from Vaclav Kotesovec, Feb 24 2015

A038077 Number of rooted identity trees with 2-colored nodes.

Original entry on oeis.org

2, 4, 10, 36, 132, 532, 2222, 9584, 42248, 189776, 864830, 3989656, 18593424, 87413444, 414060796, 1974260912, 9467922870, 45638482068, 221001289714, 1074591477112, 5244497440468, 25681907242416, 126149132242490, 621386729646752, 3068748094479108
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Shifts left and halves under Weigh transform.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n=1, 2, 2*b((n-1)$2)):
    seq(a(n), n=1..40); # Alois P. Heinz, May 20 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n==1, 2, 2*b[n-1, n-1]];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

a(n) = 2 * A005753(n).

A038080 Number of identity trees with 3-colored nodes.

Original entry on oeis.org

1, 3, 3, 9, 39, 189, 981, 5490, 31674, 189954, 1170126, 7382745, 47494197, 310712808, 2061987642, 13855192866, 94113385437, 645424668666, 4464027720900, 31110200069511, 218292811705458, 1541172223659249
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Formula

G.f.: B(x) - B^2(x)/2 - B(x^2)/2, where B(x) is g.f. for A038079.
a(n) ~ c * d^n / n^(5/2), where d = 7.969494030514425004826375511986491746399264355846412073489715938... and c = 0.3712461766927875417276388215355520756010680416348018056669... - Vaclav Kotesovec, Dec 26 2020
Showing 1-3 of 3 results.