cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038098 Number of primes < n^3.

Original entry on oeis.org

0, 4, 9, 18, 30, 47, 68, 97, 129, 168, 217, 269, 327, 400, 476, 564, 656, 765, 882, 1007, 1147, 1298, 1457, 1633, 1821, 2020, 2227, 2460, 2707, 2961, 3228, 3512, 3817, 4137, 4483, 4821, 5194, 5579, 5995, 6413, 6850, 7308, 7789, 8293
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

From Zhi-Wei Sun, Oct 17 2015: (Start)
Conjecture: (i) For any integer k > 2 the sequence pi(n^k)/n^k (n = 2,3,...) is strictly decreasing, where pi(x) denotes the number of primes not exceeding x.
(ii) All the numbers pi(n^2)/n^2 (n = 1,2,3,...) are pairwise distinct. Moreover, we have pi(n^2)/n^2 > pi((n+1)^2)/(n+1)^2 for all n > 15646.
(End)

Examples

			a(2)=4 because the only primes < 8 are 2,3,5 and 7.
		

Crossrefs

Cf. A014085, A038107, A060199 (first differences).

Programs

  • PARI
    vector(100, n, primepi(n^3)) \\ Altug Alkan, Oct 17 2015
  • Sage
    [prime_pi(n^3) for n in range(1, 45)] # Zerinvary Lajos, Jun 06 2009
    

Formula

a(n) = A000720(A000578(n)). - Michel Marcus, Sep 02 2013