cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038111 Denominator of density of integers with smallest prime factor prime(n).

Original entry on oeis.org

2, 6, 15, 105, 385, 1001, 17017, 323323, 7436429, 19605131, 86822723, 3212440751, 131710070791, 5663533044013, 266186053068611, 613385252723321, 2783825377744303, 5855632691117327, 392327390304860909, 27855244711645124539, 2033432863950094091347, 160641196252057433216413
Offset: 1

Views

Author

Keywords

Comments

Denominator of (Product_{k=1..n-1} (1 - 1/prime(k)))/prime(n). - Vladimir Shevelev, Jan 09 2015
a(n)/a(n-1) = prime(n)/q(n) where q(n) is 1 or a prime for all n < 1000. What are the first indices for which q(n) is composite? - M. F. Hasler, Dec 04 2018

Examples

			From _M. F. Hasler_, Dec 03 2018: (Start)
The density of the even numbers is 1/2, thus a(1) = 2.
The density of the numbers divisible by 3 but not by 2 is 1/6, thus a(2) = 6.
The density of multiples of 5 not divisible by 2 or 3 is 2/30, thus a(3) = 15. (End)
		

Crossrefs

Programs

  • Maple
    N:= 100: # for the first N terms
    Q:= 1: p:= 1:
    for n from 1 to N do
      p:= nextprime(p);
      A[n]:= denom(Q/p);
      Q:= Q * (1 - 1/p);
    end:
    seq(A[n],n=1..N); # Robert Israel, Jul 14 2014
  • Mathematica
    Denominator@Table[ Product[ 1-1/Prime[ k ], {k, n-1} ]/Prime[ n ], {n, 1, 64} ]
    (* Wouter Meeussen *)
    Denominator@
    Table[EulerPhi[Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n] - 1}]]]/
    Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n]}]], {n, 1, 21}]
    (* Fred Daniel Kline, Jul 14 2014 *)
  • PARI
    apply( A038111(n)=denominator(prod(k=1,n-1,1-1/prime(k)))*prime(n), [1..30]) \\ M. F. Hasler, Dec 03 2018

Formula

a(n) = denominator of phi(e^(psi(p_n-1)))/e^(psi(p_n)), where psi(.) is the second Chebyshev function and phi(.) is Euler's totient function. - Fred Daniel Kline, Jul 17 2014
a(n) = prime(n)*A060753(n). - Vladimir Shevelev, Jan 10 2015
a(n) = a(n-1)*prime(n)/q(n), where q(n) = 1 except for q({3, 5, 6, 10, 11, 16, 17, 18, ...}) = (2, 3, 5, 11, 7, 23, 13, 29, ...), cf. A112037. - M. F. Hasler, Dec 03 2018

Extensions

Name edited by M. F. Hasler, Dec 03 2018