A038111 Denominator of density of integers with smallest prime factor prime(n).
2, 6, 15, 105, 385, 1001, 17017, 323323, 7436429, 19605131, 86822723, 3212440751, 131710070791, 5663533044013, 266186053068611, 613385252723321, 2783825377744303, 5855632691117327, 392327390304860909, 27855244711645124539, 2033432863950094091347, 160641196252057433216413
Offset: 1
Examples
From _M. F. Hasler_, Dec 03 2018: (Start) The density of the even numbers is 1/2, thus a(1) = 2. The density of the numbers divisible by 3 but not by 2 is 1/6, thus a(2) = 6. The density of multiples of 5 not divisible by 2 or 3 is 2/30, thus a(3) = 15. (End)
Links
- Robert Israel, Table of n, a(n) for n = 1..277
- Fred Kline and Gerry Myerson, Identity for frequency of integers with smallest prime(n) divisor, Mathematics Stack Exchange, Jul 2014.
- Vladimir Shevelev, Generalized Newman phenomena and digit conjectures on primes, Int'l J. Math. and Math. Sci. (2008) Art. ID 908045, 1-12. See Eq. (5.8).
Programs
-
Maple
N:= 100: # for the first N terms Q:= 1: p:= 1: for n from 1 to N do p:= nextprime(p); A[n]:= denom(Q/p); Q:= Q * (1 - 1/p); end: seq(A[n],n=1..N); # Robert Israel, Jul 14 2014
-
Mathematica
Denominator@Table[ Product[ 1-1/Prime[ k ], {k, n-1} ]/Prime[ n ], {n, 1, 64} ] (* Wouter Meeussen *) Denominator@ Table[EulerPhi[Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n] - 1}]]]/ Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n]}]], {n, 1, 21}] (* Fred Daniel Kline, Jul 14 2014 *)
-
PARI
apply( A038111(n)=denominator(prod(k=1,n-1,1-1/prime(k)))*prime(n), [1..30]) \\ M. F. Hasler, Dec 03 2018
Formula
a(n) = denominator of phi(e^(psi(p_n-1)))/e^(psi(p_n)), where psi(.) is the second Chebyshev function and phi(.) is Euler's totient function. - Fred Daniel Kline, Jul 17 2014
a(n) = prime(n)*A060753(n). - Vladimir Shevelev, Jan 10 2015
a(n) = a(n-1)*prime(n)/q(n), where q(n) = 1 except for q({3, 5, 6, 10, 11, 16, 17, 18, ...}) = (2, 3, 5, 11, 7, 23, 13, 29, ...), cf. A112037. - M. F. Hasler, Dec 03 2018
Extensions
Name edited by M. F. Hasler, Dec 03 2018
Comments