A038137 Reflection of A037027: T(n,m) = U(n,n-m), m=0..n, where U is as in A037027.
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 9, 10, 5, 1, 5, 14, 22, 20, 8, 1, 6, 20, 40, 51, 38, 13, 1, 7, 27, 65, 105, 111, 71, 21, 1, 8, 35, 98, 190, 256, 233, 130, 34, 1, 9, 44, 140, 315, 511, 594, 474, 235, 55, 1, 10, 54, 192, 490, 924, 1295, 1324, 942, 420, 89, 1, 11, 65, 255
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns 0 <= k <= n) begins 1; 1, 1; 1, 2, 2; 1, 3, 5, 3; 1, 4, 9, 10, 5; 1, 5, 14, 22, 20, 8; 1, 6, 20, 40, 51, 38, 13; 1, 7, 27, 65, 105, 111, 71, 21; ...
Links
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- Pieter Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
- Pieter Moree, Convoluted convolved Fibonacci numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
- Eric Weisstein's World of Mathematics, Fibonacci polynomial.
Crossrefs
Programs
-
Haskell
a038137 n k = a038137_tabl !! n !! k a038137_row n = a038137_tabl !! n a038137_tabl = map reverse a037027_tabl -- Reinhard Zumkeller, Jul 08 2012
Formula
From Paul Barry, Oct 24 2005: (Start)
G.f.: 1/(1 - x - x*y - x^2*y^2).
T(n,k) = Sum_{j=0..n} C((n+j)/2, j) * (1 + (-1)^(n+j)) * C(j, n-k)/2. (End)
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2), T(n,k) = 0 if n < 0 or if n < k, and T(0,0) = 1. - Philippe Deléham, Nov 30 2006
Sum_{k=0..n} (-1)^k*T(n,k) = A059841(n). - Philippe Deléham, Nov 30 2006
T(n,k) = A208336(n+1,k).- Philippe Deléham, Apr 05 2012
Extensions
Title corrected by L. Edson Jeffery, Apr 23 2011
Corrected by Philippe Deléham, Apr 05 2012
Comments