cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038137 Reflection of A037027: T(n,m) = U(n,n-m), m=0..n, where U is as in A037027.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 9, 10, 5, 1, 5, 14, 22, 20, 8, 1, 6, 20, 40, 51, 38, 13, 1, 7, 27, 65, 105, 111, 71, 21, 1, 8, 35, 98, 190, 256, 233, 130, 34, 1, 9, 44, 140, 315, 511, 594, 474, 235, 55, 1, 10, 54, 192, 490, 924, 1295, 1324, 942, 420, 89, 1, 11, 65, 255
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (2,2). - Joerg Arndt, Jul 01 2011
The n-th diagonal D(n) = {T(n,0), T(n+1,1), ..., T(n+m,m), ...} of the triangle has generating function F(x) = 1/(1 - x - x^2)^(n+1) for n = 0,1,2,.... - L. Edson Jeffery, Mar 20 2011
Let p(n,x) denote the Fibonacci polynomial, defined by p(1,x) = 1, p(2,x) = x, and p(n,x) = x*p(n-1,x) + p(n-2,x) for n >= 3. Let q(n,x) be the numerator polynomial of the rational function p(n, 1 + 1/x). The coefficients of the polynomial q(n,x) are given by the (n-1)-th row of T(n,k). E.g., p(5,x) = 1 + 3*x^2 + x^4 gives q(5,x) = 1 + 4*x + 9*x^2 + 10*x^2 + 5*x^4. - Clark Kimberling, Nov 04 2013

Examples

			Triangle T(n,k) (with rows n >= 0 and columns 0 <= k <= n) begins
  1;
  1, 1;
  1, 2,  2;
  1, 3,  5,  3;
  1, 4,  9, 10,   5;
  1, 5, 14, 22,  20,   8;
  1, 6, 20, 40,  51,  38, 13;
  1, 7, 27, 65, 105, 111, 71, 21;
  ...
		

Crossrefs

Row sums are Pell numbers A000129.
Diagonal sums are unsigned version of A077930.

Programs

  • Haskell
    a038137 n k = a038137_tabl !! n !! k
    a038137_row n = a038137_tabl !! n
    a038137_tabl = map reverse a037027_tabl
    -- Reinhard Zumkeller, Jul 08 2012

Formula

From Paul Barry, Oct 24 2005: (Start)
G.f.: 1/(1 - x - x*y - x^2*y^2).
T(n,k) = Sum_{j=0..n} C((n+j)/2, j) * (1 + (-1)^(n+j)) * C(j, n-k)/2. (End)
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2), T(n,k) = 0 if n < 0 or if n < k, and T(0,0) = 1. - Philippe Deléham, Nov 30 2006
Sum_{k=0..n} (-1)^k*T(n,k) = A059841(n). - Philippe Deléham, Nov 30 2006
T(n,k) = A208336(n+1,k).- Philippe Deléham, Apr 05 2012

Extensions

Title corrected by L. Edson Jeffery, Apr 23 2011
Corrected by Philippe Deléham, Apr 05 2012