A124137 A signed aerated and skewed version of A038137.
1, 0, 1, -1, 0, 2, 0, -2, 0, 3, 1, 0, -5, 0, 5, 0, 3, 0, -10, 0, 8, -1, 0, 9, 0, -20, 0, 13, 0, -4, 0, 22, 0, -38, 0, 21, 1, 0, -14, 0, 51, 0, -71, 0, 34, 0, 5, 0, -40, 0, 111, 0, -130, 0, 55, -1, 0, 20, 0, -105, 0, 233, 0, -235, 0, 89
Offset: 0
Examples
Triangle begins: 1; 0, 1; -1, 0, 2; 0, -2, 0, 3; 1, 0, -5, 0, 5; 0, 3, 0, -10, 0, 8; -1, 0, 9, 0, -20, 0, 13; 0, -4, 0, 22, 0, -38, 0, 21; 1, 0, -14, 0, 51, 0, -71, 0, 34; 0, 5, 0, -40, 0, 111, 0, -130, 0, 55;
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Programs
-
Mathematica
T[0, 0]:= 1; T[n_, n_]:= Fibonacci[n + 1]; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n - 1, k - 1] + T[n - 2, k - 2] - T[n - 2, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
PARI
{T(n,k) = if(n==0 && k==0, 1, if(k==n, fibonacci(n+1), if(k<0 || n
G. C. Greubel, May 27 2018
Formula
Extensions
Corrected and extended by Philippe Deléham, Apr 05 2012
Comments