cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038164 Expansion of 1/((1-x)*(1-x^2))^4.

Original entry on oeis.org

1, 4, 14, 36, 85, 176, 344, 624, 1086, 1800, 2892, 4488, 6798, 10032, 14520, 20592, 28743, 39468, 53482, 71500, 94523, 123552, 159952, 205088, 260780, 328848, 411672, 511632, 631788, 775200, 945744, 1147296, 1384701, 1662804
Offset: 0

Views

Author

Keywords

Comments

From Gary W. Adamson, Mar 02 2010: (Start)
Given the tetrahedral numbers, A000292, shift the offset to 0; then
(1 + 4x + 10x^2 + 20x^3 + ...)*(1 + 4x^2 + 10x^4 + 20x^6 + ...) =
(1 + 4x^2 + 14x^3 + 36x^4 + ...) (End)

Crossrefs

Cf. A000292. - Gary W. Adamson, Mar 02 2010

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2))^4,{x,0,40}],x] (* or *) LinearRecurrence[ {4,-2,-12,17,8,-28,8,17,-12,-2,4,-1},{1,4,14,36,85,176,344,624,1086,1800,2892,4488},40] (* Harvey P. Dale, Jul 02 2011 *)
  • PARI
    Vec(1/((1-x)*(1-x^2))^4 + O(x^40)) \\ Michel Marcus, Jan 13 2024

Formula

a(2*k) = (4*k^2 + 24*k + 21)*binomial(k + 5, 5)/21 = A059600(k); a(2*k + 1) = 4*binomial(k + 6, 6)*(7 + 2*k)/7 = 4*A050486(k), k >= 0.
a(0)=1, a(1)=4, a(2)=14, a(3)=36, a(4)=85, a(5)=176, a(6)=344, a(7)=624, a(8)=1086, a(9)=1800, a(10)=2892, a(11)=4488, a(n)=4*a(n-1)-2*a(n-2)- 12*a(n-3)+17*a(n-4)+8*a(n-5)-28*a(n-6)+8*a(n-7)+17*a(n-8)-12*a(n-9)- 2*a(n-10)+4*a(n-11)-a(n-12). - Harvey P. Dale, Jul 02 2011