cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038182 3-infinitary perfect numbers k: 3-i-sigma(k) = 2*k, where 3-i-sigma = A049418.

Original entry on oeis.org

6, 28, 3024, 6552, 27578880, 49266240, 49095705098695680
Offset: 1

Views

Author

Keywords

Comments

Similarly, we have 3-i-sigma(x)/x = r for the following numbers: r = 3 for x = 672, 13104, 4021920, 55157760, 98532480, 459818240, 372667889664, 7267023848448, 1178296922368696320, 5498718971053916160, ...; r = 4 for x = 2178540; r = 3/2 for x = 2, 24, 9192960, 196382820394782720. (Values above 10^7 from Yasutoshi Kohmoto, some terms may be missing.) - M. F. Hasler, Sep 21 2022

Examples

			Factorizations: 2*3, 2^2*7, 2^4*3^3*7, 2^3*3^2*7*13, 2^9*3^4*5*7*19, 2^6*3*5*19*37*73, 2^10*3^6*5*19^2*127*379*757.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 3]}, m = Length[d]; Product[(p^((d[[j]] + 1)*3^(m - j)) - 1)/(p^(3^(m - j)) - 1), {j, 1, m}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[7000], s[#] == 2*# &] (* Amiram Eldar, Oct 24 2024 *)
  • PARI
    is_A038182(n)=A049418(n)==2*n \\ M. F. Hasler, Sep 21 2022

Extensions

Definition shortened by R. J. Mathar, Oct 06 2010