A038201 5-wave sequence.
1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 12, 14, 15, 29, 41, 50, 55, 105, 146, 175, 190, 365, 511, 616, 671, 1287, 1798, 2163, 2353, 4516, 6314, 7601, 8272, 15873, 22187, 26703, 29056, 55759, 77946, 93819, 102091, 195910, 273856, 329615, 358671, 688286, 962142
Offset: 0
Examples
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5: 0, 0, 0, 0, 1 1, 1, 1, 1, 1 1, 2, 3, 4, 5 5, 9, 12, 14, 15 15, 29, 41, 50, 55 55, 105, 146, 175, 190 190, 365, 511, 616, 671 G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 9*x^8 + 12*x^9 + ...
References
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Eq. (1).
Links
- F. v. Lamoen, Wave sequences
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Hendecagon.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1).
Crossrefs
Programs
-
Maple
m:=5: nmax:=12: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
-
Mathematica
LinearRecurrence[{0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1},{1,1,1,1,1,2,3,4,5,9,12,14,15,29,41,50,55,105,146,175},50] (* Harvey P. Dale, Dec 13 2012 *)
-
PARI
{a(n) = local(m); if( n<=0, n==0, m = (n-1)\4 * 4; sum(k=2*m - n, m, a(k)))};
Formula
a(n) = a(n-1)+a(n-2) if n=4*m+1, a(n) = a(n-1)+a(n-4) if n=4*m+2, a(n) = a(n-1)+a(n-6) if n=4*m+3 and a(n) = a(n-1)+a(n-8) if n=4*m.
G.f.: -(1+x+x^2+x^3-2*x^4-x^5+x^7-x^8-x^11+x^12)/(-1+3*x^4+3*x^8-4*x^12-x^16+x^20).
a(n) = 3*a(n-4)+3*a(n-8)-4*a(n-12)-a(n-16)+a(n-20).
a(n-1) = sequence(sequence(T(n,k), k=2..5), n>=2) with a(0)=1; T(n,k) = sum(T(n-1,k1), k1 = 6-k..5) with T(1,1) = T(1,2) = T(1,3) = T(1,4) = 0 and T(1,5) = 1; n>=1 and 1 <= k <= 5. [Steinbach]
Extensions
Edited by Floor van Lamoen, Feb 05 2002
Edited and information added by Johannes W. Meijer, Aug 03 2011
Comments