cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038218 Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*12^j (with i, j >= 0).

Original entry on oeis.org

1, 2, 12, 4, 48, 144, 8, 144, 864, 1728, 16, 384, 3456, 13824, 20736, 32, 960, 11520, 69120, 207360, 248832, 64, 2304, 34560, 276480, 1244160, 2985984, 2985984, 128, 5376, 96768, 967680, 5806080, 20901888, 41803776, 35831808
Offset: 0

Views

Author

Keywords

Comments

Examples

			From _Petros Hadjicostas_, Jul 23 2019: (Start)
Triangle T(i,j) (with rows i >= 0 and columns j >= 0) begins as follows:
    1;
    2,   12;
    4,   48,   144;
    8,  144,   864,   1728;
   16,  384,  3456,  13824,   20736;
   32,  960, 11520,  69120,  207360,   248832;
   64, 2304, 34560, 276480, 1244160,  2985984, 2985984;
  128, 5376, 96768, 967680, 5806080, 20901888, 41803776, 35831808;
  ... (End)
		

Crossrefs

Cf. A001021 (main diagonal), A001023 (row sums).

Programs

  • Magma
    /* As triangle */ [[Binomial(i,j)*2^(i-j)*12^j: j in [0..i]]: i in [0.. 15]]; // Vincenzo Librandi, Jul 24 2019
  • Mathematica
    Flatten[Table[Binomial[i, j] 2^(i - j) 12^j, {i, 0, 8}, {j, 0, i}]] (* Vincenzo Librandi, Jul 24 2019 *)

Formula

From Petros Hadjicostas, Jul 23 2019: (Start)
Bivariate g.f.: Sum_{i,j >= 0} T(i,j)*x^i*y^j = 1/(1 - 2*x * (1 + 6*y)).
G.f. for row i >= 0: 2^i * (1 + 6*y)^i.
G.f. for column j >= 0: (12*x)^j/(1 - 2*x)^(j+1).
(End)

Extensions

Name edited by Petros Hadjicostas, Jul 23 2019