A038218 Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*12^j (with i, j >= 0).
1, 2, 12, 4, 48, 144, 8, 144, 864, 1728, 16, 384, 3456, 13824, 20736, 32, 960, 11520, 69120, 207360, 248832, 64, 2304, 34560, 276480, 1244160, 2985984, 2985984, 128, 5376, 96768, 967680, 5806080, 20901888, 41803776, 35831808
Offset: 0
Examples
From _Petros Hadjicostas_, Jul 23 2019: (Start) Triangle T(i,j) (with rows i >= 0 and columns j >= 0) begins as follows: 1; 2, 12; 4, 48, 144; 8, 144, 864, 1728; 16, 384, 3456, 13824, 20736; 32, 960, 11520, 69120, 207360, 248832; 64, 2304, 34560, 276480, 1244160, 2985984, 2985984; 128, 5376, 96768, 967680, 5806080, 20901888, 41803776, 35831808; ... (End)
Links
- B. N. Cyvin, J. Brunvoll, and S. J. Cyvin, Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
- Gábor Kallós, A generalization of Pascal's triangle using powers of base numbers, Ann. Math. Blaise Pascal 13(1) (2006), 1-15. [See Section 2 of the paper with title "ab-based triangles". Apparently, this is a 2(12)-based triangle; i.e., a = 2 and b = 12 even though b = 12 > 9. - _Petros Hadjicostas_, Jul 30 2019]
Programs
-
Magma
/* As triangle */ [[Binomial(i,j)*2^(i-j)*12^j: j in [0..i]]: i in [0.. 15]]; // Vincenzo Librandi, Jul 24 2019
-
Mathematica
Flatten[Table[Binomial[i, j] 2^(i - j) 12^j, {i, 0, 8}, {j, 0, i}]] (* Vincenzo Librandi, Jul 24 2019 *)
Formula
From Petros Hadjicostas, Jul 23 2019: (Start)
Bivariate g.f.: Sum_{i,j >= 0} T(i,j)*x^i*y^j = 1/(1 - 2*x * (1 + 6*y)).
G.f. for row i >= 0: 2^i * (1 + 6*y)^i.
G.f. for column j >= 0: (12*x)^j/(1 - 2*x)^(j+1).
(End)
Extensions
Name edited by Petros Hadjicostas, Jul 23 2019
Comments