cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038220 Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*2^j.

Original entry on oeis.org

1, 3, 2, 9, 12, 4, 27, 54, 36, 8, 81, 216, 216, 96, 16, 243, 810, 1080, 720, 240, 32, 729, 2916, 4860, 4320, 2160, 576, 64, 2187, 10206, 20412, 22680, 15120, 6048, 1344, 128, 6561, 34992, 81648, 108864, 90720, 48384, 16128, 3072, 256
Offset: 0

Views

Author

Keywords

Comments

Row sums give A000351; central terms give A119309. - Reinhard Zumkeller, May 14 2006
Triangle of coefficients in expansion of (3 + 2x)^n, where n is a nonnegative integer. - Zagros Lalo, Jul 23 2018

Examples

			Triangle begins:
   1;
   3,   2;
   9,  12,   4;
  27,  54,  36,   8;
  81, 216, 216,  96,  16;
  ...
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48

Crossrefs

Programs

  • Haskell
    a038220 n k = a038220_tabl !! n !! k
    a038220_row n = a038220_tabl !! n
    a038220_tabl = iterate (\row ->
       zipWith (+) (map (* 3) (row ++ [0])) (map (* 2) ([0] ++ row))) [1]
    -- Reinhard Zumkeller, May 26 2013, Apr 02 2011
    
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 3 t[n - 1, k] + 2 t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
    Table[CoefficientList[ Expand[(3 + 2x)^n], x], {n, 0, 9}] // Flatten  (* Zagros Lalo, Jul 23 2018 *)
    Table[CoefficientList[Binomial[i, j] *3^(i - j)*2^j, x], {i, 0, 9}, {j, 0, i}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
  • PARI
    T(i,j)=binomial(i,j)*3^(i-j)*2^j \\ Charles R Greathouse IV, Jul 19 2016

Formula

T(n,k) = A007318(n,k) * A036561(n,k). - Reinhard Zumkeller, May 14 2006
G.f.: 1/(1 - 3*x - 2*x*y). - Ilya Gutkovskiy, Apr 21 2017
T(0,0) = 1; T(n,k) = 3 T(n-1,k) + 2 T(n-1,k-1) for k = 0...n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 23 2018