cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038234 Triangle whose (n, k)-th entry is binomial(n, k)*4^(n - k)*4^k.

Original entry on oeis.org

1, 4, 4, 16, 32, 16, 64, 192, 192, 64, 256, 1024, 1536, 1024, 256, 1024, 5120, 10240, 10240, 5120, 1024, 4096, 24576, 61440, 81920, 61440, 24576, 4096, 16384, 114688, 344064, 573440, 573440, 344064, 114688, 16384, 65536, 524288
Offset: 0

Views

Author

Keywords

Comments

Also the absolute values of the coefficients of the Belyi Polynomial P_(i,i)(x). - R. J. Mathar, Oct 16 2008

Examples

			1 ;
4 4 ;
16 32 16 ;
64 192 192 64 ;
256 1024 1536 1024 256 ;
1024 5120 10240 10240 5120 1024 ;
4096 24576 61440 81920 61440 24576 4096 ;
16384 114688 344064 573440 573440 344064 114688 16384 ;
65536 524288 1835008 3670016 4587520 3670016 1835008 524288 65536 ;
262144 2359296 9437184 22020096 33030144 33030144 22020096 9437184 2359296 262144 ;
		

Programs

  • Maple
    seq(print(seq(4^n*binomial(n, k), k=0..n)), n=0..9);  # Peter Luschny, Feb 07 2025

Formula

G.f.: 1/(1 - 4*x - 4*x*y). - Ilya Gutkovskiy, Apr 21 2017
T(n, k) = 2^(2*n)*JacobiP(n - k, k, -1/2 - n, 1). - Peter Luschny, Feb 07 2025