cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A380865 Triangle read by rows: T(n, k) = 2^(2*n)*JacobiP(n - k, k, -1/2 - n, -1).

Original entry on oeis.org

1, 2, 4, 6, 24, 16, 20, 120, 160, 64, 70, 560, 1120, 896, 256, 252, 2520, 6720, 8064, 4608, 1024, 924, 11088, 36960, 59136, 50688, 22528, 4096, 3432, 48048, 192192, 384384, 439296, 292864, 106496, 16384, 12870, 205920, 960960, 2306304, 3294720, 2928640, 1597440, 491520, 65536
Offset: 0

Views

Author

Peter Luschny, Feb 07 2025

Keywords

Examples

			Triangle begins:
  [0]    1;
  [1]    2,     4;
  [2]    6,    24,     16;
  [3]   20,   120,    160,     64;
  [4]   70,   560,   1120,    896,    256;
  [5]  252,  2520,   6720,   8064,   4608,   1024;
  [6]  924, 11088,  36960,  59136,  50688,  22528,   4096;
  [7] 3432, 48048, 192192, 384384, 439296, 292864, 106496, 16384;
		

Crossrefs

Cf. A038234, A380851, A097807, A128908, A380864 (row sums).

Programs

  • Maple
    T := (n, k) -> 2^(2*n)*JacobiP(n - k, k, -1/2 - n, -1):
    seq(print(seq(simplify(T(n, k)), k=0..n)), n=0..9);
  • Mathematica
    T[n_, k_] := 4^n Binomial[n, k] Hypergeometric2F1[1/2, k - n, k + 1, 1];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten

Formula

Consider a family of Jacobi polynomials defined with a rational number r as
J(n, k, r, x) = denominator(r)^(2*n)*JacobiP(n - k, k, r - n, x).
For r = -1/2 and x = -1 is J(n, k, r, x) = T(n, k).
For r = 1/2 and x = -1 is J(n, k, r, x) = A380851(n, k).
For r = 1/2 or r = -1/2 and x = 1 is J(n, k, r, x) = A038234(n, k).
The choice r = n and x = -1 gives Riordan array A097807, (1/(1 + x), 1).
The choice r = k and x = -1 gives Riordan array A128908, (1, x/(1 - x)^2).
The choice r = n and x = 1 gives the Pascal triangle.
T(n, k) = 4^n*binomial(n, k)*hypergeom([1/2, k - n], [k + 1], 1).
Showing 1-2 of 2 results.