cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038291 Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*1^j.

Original entry on oeis.org

1, 9, 1, 81, 18, 1, 729, 243, 27, 1, 6561, 2916, 486, 36, 1, 59049, 32805, 7290, 810, 45, 1, 531441, 354294, 98415, 14580, 1215, 54, 1, 4782969, 3720087, 1240029, 229635, 25515, 1701, 63, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 0

Views

Author

Keywords

Comments

T(i,j) is the number of i-permutations of 10 objects a,b,c,d,e,f,g,h,i,j with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007
Reflected version of A013616. - R. J. Mathar, Dec 19 2008
Triangle of coefficients in expansion of (9 + x)^n, where n is a nonnegative integer. - Zagros Lalo, Jul 21 2018

Examples

			Triangle begins:
  1
  9, 1
  81, 18, 1
  729, 243, 27, 1
  6561, 2916, 486, 36, 1
  59049, 32805, 7290, 810, 45, 1
  531441, 354294, 98415, 14580, 1215, 54, 1
  4782969, 3720087, 1240029, 229635, 25515, 1701, 63, 1
  43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48

Crossrefs

Programs

  • GAP
    Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*9^(i-j)*1^j))); # Muniru A Asiru, Jul 21 2018
  • Maple
    for i from 0 to 9 do seq(binomial(i, j)*9^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 1, k - 1]];
    Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *)
    Table[CoefficientList[ Expand[(9 + x)^n], x], {n, 0, 8}] // Flatten  (* Zagros Lalo, Jul 22 2018 *)

Formula

T(0,0) = 1; T(n,k) = 9*T(n-1,k) + T(n-1,k-1) for k = 0..n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 21 2018