A038291 Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*1^j.
1, 9, 1, 81, 18, 1, 729, 243, 27, 1, 6561, 2916, 486, 36, 1, 59049, 32805, 7290, 810, 45, 1, 531441, 354294, 98415, 14580, 1215, 54, 1, 4782969, 3720087, 1240029, 229635, 25515, 1701, 63, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 0
Examples
Triangle begins: 1 9, 1 81, 18, 1 729, 243, 27, 1 6561, 2916, 486, 36, 1 59049, 32805, 7290, 810, 45, 1 531441, 354294, 98415, 14580, 1215, 54, 1 4782969, 3720087, 1240029, 229635, 25515, 1701, 63, 1 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
Links
- Muniru A Asiru, Rows n=0..50 of triangle, flattened
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
Programs
-
GAP
Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*9^(i-j)*1^j))); # Muniru A Asiru, Jul 21 2018
-
Maple
for i from 0 to 9 do seq(binomial(i, j)*9^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
-
Mathematica
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *) Table[CoefficientList[ Expand[(9 + x)^n], x], {n, 0, 8}] // Flatten (* Zagros Lalo, Jul 22 2018 *)
Formula
T(0,0) = 1; T(n,k) = 9*T(n-1,k) + T(n-1,k-1) for k = 0..n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 21 2018
Comments