A038303 Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*1^j.
1, 10, 1, 100, 20, 1, 1000, 300, 30, 1, 10000, 4000, 600, 40, 1, 100000, 50000, 10000, 1000, 50, 1, 1000000, 600000, 150000, 20000, 1500, 60, 1, 10000000, 7000000, 2100000, 350000, 35000, 2100, 70, 1, 100000000, 80000000, 28000000
Offset: 0
Examples
1 10, 1 100, 20, 1 1000, 300, 30, 1 10000, 4000, 600, 40, 1 100000, 50000, 10000, 1000, 50, 1 1000000, 600000, 150000, 20000, 1500, 60, 1 10000000, 7000000, 2100000, 350000, 35000, 2100, 70, 1 100000000, 80000000, 28000000, 5600000, 700000, 56000, 2800, 80, 1
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
Links
- Muniru A Asiru, Rows n=0..50 of triangle, flattened
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
Programs
-
GAP
Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*10^(i-j)*1^j))); # Muniru A Asiru, Jul 21 2018
-
Maple
for i from 0 to 8 do seq(binomial(i, j)*10^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
-
Mathematica
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 10 t[n - 1, k] + t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *) Table[CoefficientList[ Expand[(10 + x)^n], x], {n, 0, 8}] // Flatten (* Zagros Lalo, Jul 22 2018 *) Table[CoefficientList[Binomial[i, j] * 10^(i - j) * 1^j, x], {i, 0, 8}, {j, 0, i}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
Formula
Sum_{k=0..n} T(n,k)*x^k = (10+x)^n. - Philippe Deléham, Dec 15 2009
G.f.: -1/(-1+10*x+x*y). - R. J. Mathar, Aug 11 2015
T(0,0) = 1; T(n,k) = 10 T(n-1,k) + T(n-1,k-1) for k = 0...n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 21 2018
Comments