cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038315 Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*1^j.

Original entry on oeis.org

1, 11, 1, 121, 22, 1, 1331, 363, 33, 1, 14641, 5324, 726, 44, 1, 161051, 73205, 13310, 1210, 55, 1, 1771561, 966306, 219615, 26620, 1815, 66, 1, 19487171, 12400927, 3382071, 512435, 46585, 2541, 77, 1, 214358881, 155897368, 49603708
Offset: 0

Views

Author

Keywords

Comments

T(i,j) is the number of i-permutations of 12 objects a,b,c,d,e,f,g,h,i,j,k,l, with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007

Examples

			1
11, 1
121, 22, 1
1331, 363, 33, 1
14641, 5324, 726, 44, 1
161051, 73205, 13310, 1210, 55, 1
1771561, 966306, 219615, 26620, 1815, 66, 1
19487171, 12400927, 3382071, 512435, 46585, 2541, 77, 1
214358881, 155897368, 49603708, 9018856, 1024870, 74536, 3388, 88, 1
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.

Programs

  • Maple
    for i from 0 to 8 do seq(binomial(i, j)*11^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
  • Mathematica
    Table[Binomial[i,j]11^(i-j),{i,0,10},{j,0,i}]//Flatten (* Harvey P. Dale, Nov 10 2022 *)