cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172188 Partial sums of primes of the form 3*k-1.

Original entry on oeis.org

2, 7, 18, 35, 58, 87, 128, 175, 228, 287, 358, 441, 530, 631, 738, 851, 982, 1119, 1268, 1435, 1608, 1787, 1978, 2175, 2402, 2635, 2874, 3125, 3382, 3645, 3914, 4195, 4488, 4799, 5116, 5463, 5816, 6175, 6558, 6947, 7348, 7767, 8198, 8641, 9090, 9551, 10018
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 29 2010, Feb 01 2010

Keywords

Examples

			a(1)=3*1-1=2, a(2)=2+3*2-1=7.
		

Crossrefs

Cf. A038361.

Programs

  • Maple
    Contribution from R. J. Mathar, Apr 24 2010: (Start)
    A003627 := proc(n) if n <= 2 then op(n,[2,5]) ; else for a from procname(n-1)+2 by 2 do if isprime(a) and (a mod 3) =2 then return a ; end if; end do: end if; end proc:
    A172188 := proc(n) add( A003627(i),i=1..n) ; end proc: seq(A172188(n),n=1..80) ; (End)
  • Mathematica
    Accumulate[Select[Prime[Range[100]],IntegerQ[(#+1)/3]&]]  (* Harvey P. Dale, Apr 04 2011 *)

Extensions

Entries checked by R. J. Mathar, Apr 24 2010

A354573 Prime partial sums of the primes == 5 (mod 6).

Original entry on oeis.org

5, 173, 439, 1117, 1433, 2633, 3643, 6173, 11489, 22727, 25867, 36523, 51341, 71707, 80347, 89413, 98947, 102203, 119869, 135209, 155653, 173087, 182233, 196387, 226063, 298031, 353921, 367219, 460127, 483179, 498859, 547387, 555683, 572581, 826201, 932801, 988453, 1057741, 1203421, 1253999
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 18 2022

Keywords

Comments

Primes in A038361.

Examples

			a(2) = 173 is a term because 173 = A038361(7) = 5+11+17+23+29+41+47 and is prime.
		

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0: t:= 0:
    for p from 5 by 6 while count < 100 do
      if isprime(p) then
        t:= t+p;
        if isprime(t) then R:= R, t; count:= count+1 fi
      fi
    od:
    R;
  • Mathematica
    Select[Accumulate[Select[Prime[Range[1000]], Mod[#, 6] == 5 &]], PrimeQ] (* Amiram Eldar, Aug 19 2022 *)
Showing 1-2 of 2 results.