cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038371 Smallest prime factor of 10^n + 1.

Original entry on oeis.org

2, 11, 101, 7, 73, 11, 101, 11, 17, 7, 101, 11, 73, 11, 29, 7, 353, 11, 101, 11, 73, 7, 89, 11, 17, 11, 101, 7, 73, 11, 61, 11, 19841, 7, 101, 11, 73, 11, 101, 7, 17, 11, 29, 11, 73, 7, 101, 11, 97, 11, 101, 7, 73, 11, 101, 11, 17, 7, 101, 11, 73, 11, 101, 7, 1265011073
Offset: 0

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

a(n) >= 7 for all n >= 1 since 10^n + 1 is then not divisible by 2, 3 or 5.
Record values are a({0, 1, 2, 16, 32, 64, ...}). - M. F. Hasler, Apr 04 2008
The record values (2, 11, 101, 353, 19841, 1265011073, ...) are also found in A185121 and A102050 (smallest prime factor of 10^2^n+1). - M. F. Hasler, Jun 28 2024

Examples

			a(12) = 73 as 10^12+1 = 1000000000001 = 73*137*99990001.
		

References

  • Ehrhard Behrends, Five-Minute Mathematics, translated by David Kramer. American Mathematical Society (2008) p. 7

Crossrefs

Cf. A020639 (least prime factor), A062397 (10^n + 1), A003021 (largest prime factor of 10^n + 1), A057934 (number of prime factors of 10^n + 1, with multiplicity), A119704 (as before, without multiplicity), A185121 (smallest prime factor of 10^2^n+1), A102050 (as before, but 1 if 10^2^n+1 is prime).

Programs

  • Magma
    [Min(PrimeFactors(10^n+1)):n in[0..70]]; // Vincenzo Librandi, Nov 08 2018
  • Mathematica
    Table[FactorInteger[10^n + 1][[1, 1]], {n, 0, 49}] (* Alonso del Arte, Oct 21 2011 *)
  • PARI
    A038371(n)=A020639(10^n+1) \\ Much more efficient than the naive {factor(10^n+1)[1,1]}. - M. F. Hasler, Apr 04 2008, edited Jun 29 2024
    

Formula

a(n) = A020639(A062397(n)).
For odd n, a(n) <= 11 since every (base 10) palindrome of even length is divisible by 11. - M. F. Hasler, Apr 04 2008 [See below for more precise formula.]
More generally, for k >= 0 and n == 2^k (mod 2^(k+1)), a(n) <= A185121(k) = (11, 101, 73, 17, 353, ...). This follows from x^{2q+1} + 1 = (x+1) Sum_{m=0..2q} (-x)^m, with x=10^2^k. - M. F. Hasler, Jul 30 2019
From M. F. Hasler, Jun 28 2024: (Start)
a(2k+1) = 7 iff k == 1 (mod 3), else 11. [Making the 2008 formula more precise.]
a(4k+2) = 29 iff k == 3 (mod 7), else = 61 if k == 7 (mod 15), else = 89 if k == 5 (mod 11), else 101.
a(8k+4) = 73 for all k >= 0.
a(16k+8) = 17 for all k >= 0.
a(32k+16) = 97 iff k==1 (mod 3), else 353.
a(64k+32) = 193 iff k==1 (mod 3), else 1217 if k==9 (mod 19), else 2753 if k==21 (mod 43), else 3137 if k==24 (mod 49), else 3329 if k==6 (mod 13), else 4481 if k==17 (mod 35), else 4673 if k==36 (mod 73), else 5953 if k==15 (mod 31), else 6529 if k==8 (mod 17), else 13633 if k==35 (mod 71), else 15937 if k==41 (mod 83), else 19841. (End)

Extensions

More terms from Reinhard Zumkeller, Mar 12 2002