A038444 Sums of 2 distinct powers of 10.
11, 101, 110, 1001, 1010, 1100, 10001, 10010, 10100, 11000, 100001, 100010, 100100, 101000, 110000, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 10000001, 10000010, 10000100, 10001000, 10010000, 10100000, 11000000, 100000001, 100000010, 100000100
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a038444 n = a038444_list !! (n-1) a038444_list = 11 : f [11] 90 where f xs@(x:_) z = ys ++ f ys (10 * z) where ys = (x + z) : map (* 10) xs -- Reinhard Zumkeller, Jan 28 2015
-
Maple
seq(seq(10^d + 10^j, j=0..d-1), d=1..10); # Robert Israel, Oct 14 2016
-
Mathematica
Sort[Total/@Subsets[10^Range[0,7],{2}]] (* Harvey P. Dale, Apr 20 2012 *)
-
PARI
a(n)= 10^(n-1-binomial(sqrtint(n*8)\/2, 2)) + 10^((sqrtint(n*8)+1)\2); \\ Ruud H.G. van Tol, Nov 29 2024
-
Python
from math import isqrt def A038444(n): return 10**(m:=isqrt(n<<3)+1>>1)+10**(n-1-(m*(m-1)>>1)) # Chai Wah Wu, Mar 11 2025
Formula
G.f.: (10*x - 55*x^2 + Sum_{d>=1} (4*10^d+5)*x^((d^2-d)/2+1) - Sum_{d>=1} (445*10^(d-1)+5)*x^((d^2-d)/2+2))/(5*(1-x)*(1-10*x)). - Robert Israel, Oct 14 2016
Extensions
Offset corrected by Reinhard Zumkeller, Jan 28 2015