A038458 Decimal expansion of the solution to 127^x - 113^x = 1. This is the smallest x such that q^x - p^x = 1 for two successive primes p, q.
5, 6, 7, 1, 4, 8, 1, 3, 0, 2, 0, 2, 0, 1, 7, 7, 1, 4, 6, 4, 6, 8, 4, 6, 8, 7, 5, 5, 3, 3, 4, 8, 2, 5, 6, 4, 5, 8, 6, 7, 9, 0, 2, 4, 9, 3, 8, 8, 6, 3, 8, 2, 0, 6, 8, 4, 0, 2, 8, 5, 2, 2, 1, 8, 2, 6, 8, 0, 6, 7, 6, 6, 3, 3, 8, 2, 7, 6, 9, 2, 1, 5, 0, 8, 8, 6, 9, 7, 3, 8, 5, 3, 6, 4, 2, 6, 4, 4
Offset: 0
Examples
0.567148130202017714646846875533482564586790249388638206840285221826806766338276...
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Octavian Cira, Smarandache's conjecture on consecutive primes, International J. Math. Combin. 4 (2014), pp. 69-91.
- David Lowry-Duda, A short note on gaps between powers of consecutive primes, arXiv:1709.07847 [math.NT], 2017.
- M. L. Perez, Five Smarandache conjectures on primes, Arizona State University, Special Collections.
- F. Smarandache, Conjectures which generalize Andrica's conjecture, arXiv:0707.2584 [math.GM], 2007; Octogon 7:1 (1999), pp. 173-176.
- Eric Weisstein's World of Mathematics, Andrica's Conjecture
- Eric Weisstein's World of Mathematics, Smarandache Constants
Programs
-
Mathematica
RealDigits[x/.FindRoot[127^x-113^x==1,{x,0.5},WorkingPrecision->150]][[1]] (* Harvey P. Dale, Oct 24 2017 *)
-
PARI
default(realprecision, 20080); x=solve(x=.5,.6,127^x-113^x-1); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b038458.txt", n, " ", d)); \\ Harry J. Smith, Apr 13 2009
Extensions
Title improved, incorrect formula deleted, and other edits by M. F. Hasler, Jan 02 2015
Comments