cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A038475 Sums of 3 distinct powers of 5.

Original entry on oeis.org

31, 131, 151, 155, 631, 651, 655, 751, 755, 775, 3131, 3151, 3155, 3251, 3255, 3275, 3751, 3755, 3775, 3875, 15631, 15651, 15655, 15751, 15755, 15775, 16251, 16255, 16275, 16375, 18751, 18755, 18775, 18875, 19375, 78131, 78151, 78155, 78251, 78255, 78275, 78751
Offset: 1

Views

Author

Keywords

Crossrefs

Base 5 interpretation of A038445.

Programs

  • Mathematica
    Sort[Plus @@@ Subsets[5^Range[0, 7], {3}]] (* Amiram Eldar, Jul 13 2022 *)
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A038475(n): return 5**((r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+5**((a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+5**(m+t+1) # Chai Wah Wu, Apr 04 2025

Extensions

Offset corrected by Amiram Eldar, Jul 13 2022

A038476 Sums of 4 distinct powers of 5.

Original entry on oeis.org

156, 656, 756, 776, 780, 3156, 3256, 3276, 3280, 3756, 3776, 3780, 3876, 3880, 3900, 15656, 15756, 15776, 15780, 16256, 16276, 16280, 16376, 16380, 16400, 18756, 18776, 18780, 18876, 18880, 18900, 19376, 19380, 19400, 19500, 78156, 78256, 78276, 78280, 78756, 78776, 78780
Offset: 1

Views

Author

Keywords

Crossrefs

Base 5 interpretation of A038446.

Programs

  • Mathematica
    With[{upto=80000},Select[Total/@Subsets[5^Range[0,Floor[Surd[upto-31,5]]],{4}],#<=upto&]]//Union (* Harvey P. Dale, Mar 13 2019 *)

Extensions

Offset corrected by Amiram Eldar, Jul 13 2022

A038477 Sums of 5 distinct powers of 5.

Original entry on oeis.org

781, 3281, 3781, 3881, 3901, 3905, 15781, 16281, 16381, 16401, 16405, 18781, 18881, 18901, 18905, 19381, 19401, 19405, 19501, 19505, 19525, 78281, 78781, 78881, 78901, 78905, 81281, 81381, 81401, 81405, 81881, 81901, 81905, 82001, 82005, 82025, 93781, 93881, 93901
Offset: 1

Views

Author

Keywords

Crossrefs

Base 5 interpretation of A038447.

Programs

  • Mathematica
    Union[Total[5^#]&/@Subsets[Range[0,8],{5}]] (* Harvey P. Dale, Nov 15 2012 *)
  • Python
    from itertools import islice
    def A038477_gen(): # generator of terms
        yield int(bin(n:=31)[2:],5)
        while True: yield int(bin((n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b))[2:],5)
    A038477_list = list(islice(A038477_gen(),30)) # Chai Wah Wu, Apr 05 2025

Extensions

Offset corrected by Amiram Eldar, Jul 13 2022

A139369 Array read by antidiagonals, n-th sum of 2 distinct powers of k.

Original entry on oeis.org

3, 4, 5, 5, 10, 6, 6, 17, 12, 9, 7, 26, 20, 28, 10, 8, 37, 30, 65, 30, 12, 9, 50, 42, 126, 68, 36, 17, 10, 65, 56, 217, 130, 80, 82, 18, 11, 82, 72, 344, 222, 150, 257, 84, 20, 12, 101, 90, 513, 350, 252, 626, 260, 90, 24, 13, 122, 110, 730, 520, 392, 1297, 630, 272, 108
Offset: 1

Views

Author

Jonathan Vos Post, Jun 07 2008

Keywords

Comments

n=2 column is A002522 n^2 + 1.
n=3 column is A002378 n*(n+1) Oblong (or pronic, promic, or heteromecic numbers).

Examples

			Array begins:
================================================================================
k....|.n=1.|.n=2.|.n=3.|..n=4.|..n=5.|..n=6.|...n=7.|...n=8.|..n=9.|.n=10|.OEIS.
================================================================================
k=2..|..3..|...5.|..6..|....9.|...10.|...12.|....17.|...18..|...20.|..24.|A018900
k=3..|..4..|..10.|.12..|...28.|...30.|...36.|....82.|...84..|...90.|..108|A038464
k=4..|..5..|..17.|.20..|...65.|...68.|...80.|...257.|..260..|..272.|..320|A038470
k=5..|..6..|..26.|.30..|..126.|..130.|..150.|...626.|..630..|..650.|..750|A038474
k=6..|..7..|..37.|.42..|..217.|..222.|..252.|..1297.|..1302.|.1332.|.1512|A038478
k=7..|..8..|..50.|.56..|..344.|..350.|..392.|..2402.|..2408.|.2450.|.2744|A038481
k=8..|..9..|..65.|.72..|..513.|..520.|..576.|..4097.|..4104.|.4160.|.4608|A038484
k=9..|.10..|..82.|.90..|..730.|..738.|..810.|..6562.|..6570.|.6642.|.7290|A038487
k=10.|.11..|.101.|.110.|.1001.|.1010.|.1100.|.10001.|.10010.|10100.|11000|A038444
k=11.|.12..|.122.|.132.|.1332.|.1342.|.1452.|.14642.|.14652.|14762.|15972|A038490
k=12.|.13..|.145.|.156.|.1729.|.1740.|.1872.|.20737.|.20748.|20880.|22464|A038492
================================================================================
		

Crossrefs

Showing 1-4 of 4 results.