A038498 Matrix inverse of partition triangle A008284.
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, 0, -1, -1, 1, -1, 1, 1, 0, -1, -1, 1, -1, 0, 2, 0, 0, -1, -1, 1, 0, -1, 0, 2, 0, 0, -1, -1, 1, 0, -2, 1, 1, 1, 0, 0, -1, -1, 1, 1, -2, -1, 1, 1, 1, 0, 0, -1, -1, 1, 1, -1, -2, 0, 2, 0, 1, 0, 0, -1, -1, 1
Offset: 1
Examples
Triangle begins: 1; -1,1; 0,-1,1; 1,-1,-1,1; ...
Programs
-
PARI
tp(n, k) = if (n<1, 0, if (k<1, 0, if (k == n, 1, if (k > n, 0, tp(n-1, k-1) + tp(n-k, k))))); tabl(nn) = {mtp = matrix(nn, nn, n, k, tp(n, k)); mtpi = mtp^(-1); for (n = 1, nn, for (k = 1, n, print1(mtpi[n, k], ", ");); print(););} \\ Michel Marcus, Mar 04 2014
Formula
T(n,n-k) = A010815(k) for k <= n/2. - François Marques, Feb 09 2021
Comments