A038519 Number of elements of GF(2^n) with trace 0 and subtrace 1.
1, 0, 1, 3, 2, 10, 16, 28, 72, 120, 256, 528, 992, 2080, 4096, 8128, 16512, 32640, 65536, 131328, 261632, 524800, 1048576, 2096128, 4196352, 8386560, 16777216, 33558528, 67100672, 134225920, 268435456, 536854528, 1073774592
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- F. Ruskey, Number of irreducible polynomials over GF(2) with given trace and subtrace
- F. Ruskey, Number of elements of GF(2^n) with given trace and subtrace
- Index entries for linear recurrences with constant coefficients, signature (0,2,4).
Programs
-
Magma
I:=[1,0,1,3]; [m le 4 select I[m] else 2*Self(m-2)+4*Self(m-3):m in [1..33]]; // Marius A. Burtea, Aug 02 2019
-
PARI
Vec((1 - x^2 - x^3) / ((1 - 2*x)*(1 + 2*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Aug 02 2019
Formula
a(n) = C(n, r+0) + C(n, r+4) + C(n, r+8) + ... where r = 2 if n odd, r = 0 if n even.
From Colin Barker, Aug 02 2019: (Start)
G.f.: (1 - x^2 - x^3) / ((1 - 2*x)*(1 + 2*x + 2*x^2)). - Creighton Dement, Apr 29 2005, corrected by Colin Barker, Aug 02 2019
a(n) = ((-1-i)^n + (-1+i)^n + 2^n) / 4 for n>0.
a(n) = 2*a(n-2) + 4*a(n-3) for n>3.
(End)