A038534 Numerators of coefficients of EllipticK/Pi.
1, 1, 9, 25, 1225, 3969, 53361, 184041, 41409225, 147744025, 2133423721, 7775536041, 457028729521, 1690195005625, 25145962430625, 93990019574025, 90324408810638025, 340357374376418025, 5147380044581630625, 19520119892056100625, 1187604094232693162025
Offset: 0
References
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 91, Eq. 2.1.
- L. D. Landau und E. M. Lifschitz, Mechanik, Akademie Verlag, Berlin, 1967, p. 30 (Exercise 1 in chapter III, paragraph 11.)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- B. Klee, Digital Pendulum Data Analysis: Output, Github, 2016.
- David P. Roberts and Fernando Rodriguez Villegas, Hypergeometric Motives, arXiv:2109.00027 [math.AG], 2021. See (1.2) p. 1.
- G. N. Watson, A Note on Gamma Functions.Edinburgh Mathematical Notes, 42, 1959, pp 7-9.
Programs
-
Maple
swing := proc(n) option remember; if n = 0 then 1 elif n mod 2 = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: sigma := n -> 2^(add(i, i = convert(iquo(n, 2), base, 2))): a := n -> (swing(2*n)/sigma(2*n))^2; seq(a(n),n=0..20); # Peter Luschny, Aug 06 2014
-
Mathematica
Numerator@ CoefficientList[ Series[ EllipticK@x, {x, 0, 19}]/Pi, x] (* Robert G. Wilson v, Jul 19 2007 *)
Formula
a(n) = 2^(-2*w(n))*binomial(2*n,n)^2 with w(n) = A000120(n), the number of 1's in binary expansion of n.
a(n) = A001790(n)^2.
a(n) = (-1)^n*A056982(n)*C(-1/2,n)*C(n-1/2,n). - Peter Luschny, Apr 08 2016
a(n) = numerator(((2*n)!/(2^(2*n)*(n!)^2))^2). - Stefano Spezia, May 01 2025
Comments