A048056 Duplicate of A038534.
1, 1, 9, 25, 1225, 3969, 53361, 184041, 41409225, 147744025, 2133423721
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A056982 := n -> denom(binomial(1/2, n))^2: seq(A056982(n), n=0..19); # Peter Luschny, Apr 08 2016 # Alternatively: G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20): [seq(coeff(ser,x,n), n=0..19)]: denom(%); # Peter Luschny, Sep 28 2019
Table[Power[4, 2 n - DigitCount[2 n, 2, 1]], {n, 0, 19}] (* Michael De Vlieger, May 30 2016, after Harvey P. Dale at A005187 *) G[x_] := (2 EllipticK[x])/(Pi (1 - x)); CoefficientList[Series[G[x], {x, 0, 19}], x] // Denominator (* Peter Luschny, Sep 28 2019 *)
a(n)=my(s=n); while(n>>=1, s+=n); 4^s \\ Charles R Greathouse IV, Apr 07 2012
a[n_] := 2^(4*n - 2*DigitCount[n, 2, 1] + 1); Array[a, 20, 0] (* Amiram Eldar, Aug 03 2023 *)
a(n)=my(s=n); while(n>>=1, s+=n); 2<<(2*s) \\ Charles R Greathouse IV, Apr 07 2012
n/m 1 2 3 4 ------------------------------ 1 | 1 2 | -1, 7 3 | 1, -1, 11 4 | -1, 319, -143, 715 ------------------------------ R2(Q) = sqrt(4 k) (1 + (1/6) cos(Q)^4 k + (-(1/45) cos(Q)^6 + (7/72) cos(Q)^8) k^2) R2(Q)^2 = 4 k + (4/3) cos(Q)^4 k^2 + ( -(8/45) cos(Q)^6 + (8/9) cos(Q)^8)k^3 + ... I2 = (1/(2 Pi)) Int dQ (1/2)R2(Q)^2 = 2 k + (1/4) k^2 + (3/32) k^3 + ... (2/Pi) K(k) ~ (1/2)d/dk(I2) = 1 + (1/4) k + (9/64) k^2 + ... From _Wolfdieter Lang_, Jun 11 2016 (Start): The rational triangle r(n,m) = a(n, m) / A273507(n,m) begins: n\m 1 2 3 4 ... 1: 1/6 2: -1/45 7/72 3: 1/630 -1/30 11/144 4: -1/14175 319/56700 -143/3240 715/10368 ... , row n = 5: 1/467775 -26/42525 559/45360 -221/3888 4199/62208, row 6: -2/42567525 139/2910600 -323/145800 6137/272160 -2261/31104 52003/746496, row 7: 1/1277025750 -10897/3831077250 135983/471517200 -4199/729000 527459/13996800 -52003/559872 37145/497664, row 8: -1/97692469875 15409/114932317500 -317281/10945935000 21586489/20207880000 -52877/4199040 7429/124416 -88711/746496 1964315/23887872. ... (End)
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]] Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]] RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]}, Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][ Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]] RCoefficients[n_] := With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a}, Coefficient[Coefficient[Rn/2/Sqrt[k], k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]] R2ToEllK[NMax_] := D[Expand[(2)^(-2) ReplaceAll[R[NMax], RRules[NMax]]^2] /. {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0},k] Flatten[Numerator@RCoefficients[10]] R2ToEllK[10]
n/k| 0 1 2 3 4 5 6 ------------------------------- 0 | 1 1 | 0 2 2 | 2 0 2 3 | 0 6 0 2 4 | 6 0 8 0 2 5 | 0 20 0 10 0 2 6 | 20 0 30 0 12 0 2 ------------------------------- cos(x)^4 = (1/2)^4 (6 + 8 cos(2x) + 2 cos(4x)). I4 = Int dx cos(x)^4 = (1/2)^4 Int dx ( 6 + 8 cos(2x) + 2 cos(4x) ) = C + 3/8 x + 1/4 sin(2x) + 1/32 sin(4x). Over range [0,2Pi], I4 = (3/4) Pi.
T[MaxN_] := Function[{n}, With[ {exp = Expand[Times[ 2^n, TrigReduce[Cos[x]^n]]]}, Prepend[Coefficient[exp, Cos[# x]] & /@ Range[1, n], exp /. {Cos[_] -> 0}]]][#] & /@ Range[0, MaxN];Flatten@T[10] (* alternate program *) T2[MaxN_] := Function[{n}, With[{exp = Expand[(Exp[I x] + Exp[-I x])^n]}, Prepend[2 Coefficient[exp, Exp[I # x]] & /@ Range[1, n], exp /. {Exp[] -> 0}]]][#] & /@ Range[0, MaxN]; T2[10] // ColumnForm (* _Bradley Klee, Jun 13 2016 *)
n/m 1 2 3 4 ------------------------------ 1 | 6 2 | 45, 72 3 | 630, 30, 144 4 | 14175, 56700, 3240, 10368 ------------------------------
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]] Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]] RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]}, Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][ Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]] RCoefficients[n_] := With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a}, Coefficient[Coefficient[Rn/2/Sqrt[k], k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]] Flatten[Denominator@RCoefficients[10]]
The triangle T(n, m) begins: n/m 1 2 3 4 ------------------------------ 1 | -2 2 | 2, -2 3 | -4, 8, -20 4 | 2, -58, 14, -70 ------------------------------ The rational triangle T(n, m) / A274078(n, m) begins: n/m 1 2 3 4 ------------------------------------------ 1 | -2/3 2 | 2/15, -2/3 3 | -4/315, 8/27, -20/27 4 | 2/2835, -58/945, 14/27, -70/81 ------------------------------------------ dt2(Q) = dQ(-1 - (2/3) cos(Q)^4 k + ((2/15) cos(Q)^6 - (2/3) cos(Q)^8) k^2 ) + ... dt2(Q) = dQ(-1 - (1/4) k - (9/64) k^2 + cosine series ) + ... (2/Pi) K(k) ~ I2 = (1/(2 Pi)) Int dt2(Q) = 1 + (1/4) k + (9/64) k^2+ ...
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]] Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]] RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]}, Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][ Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]] dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]] dtCoefficients[n_] := With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]] dtToEllK[NMax_] := ReplaceAll[-dt[NMax], {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0} ] Flatten[Numerator[dtCoefficients[10]]] dtToEllK[5]
n\m| 1 2 3 4 ---+--------------------- 1 | 3; 2 | 15, 3; 3 | 315, 27, 27; 4 | 2835, 945, 27, 81;
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]] Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]] RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]}, Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][ Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]] dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]] dtCoefficients[n_] := With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]] Flatten[Denominator[dtCoefficients[10]]]
n\m 1 2 3 4 5 6 ... ----------------------------------------- 1 | 1 1 2 | 11 29 1 1 3 | 491 863 6571 4399 13 5 row n=4: 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35, row n=5: 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7. ----------------------------------------- The rational irregular triangle T(n, m) / A274131(n, m) begins: n\m 1 2 3 4 5 6 ----------------------------------------------------------------------------- 1 | 1/6, 1/48 2 | 11/96, 29/960, 1/160, 1/1536 3 | 491/5760, 863/30720, 6571/725760, 4399/1935360, 13/34560, 5/165888 row n=4: 1568551/23224320, 28783/1161216, 45187/4644864, 312643/92897280, 4351/4644864, 1117/5806080, 17/663552, 35/21233664, row n=5: 25935757/464486400, 81123251/3715891200, 2226193/232243200, 2440117/619315200, 16025/11354112, 34246631/81749606400, 18161/185794560, 35443/2123366400, 49/26542080, 7/70778880. ----------------------------------------------------------------------------- t1(Q) =-Q -(1/4)*k*Q -k*((1/6)*Sin[2*Q]+(1/48)*Sin[4*Q])+... (2/Pi) K(k) ~ (1/(2 Pi)) t1(-2*Pi) = 1+(1/4)*k+...
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]] Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]] RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]}, Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][ Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]] dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]] t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]] tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]] tToEllK[NMax_]:= Expand[((t[NMax] /. Q -> -2 Pi)/2/Pi) /. k^n_ /; n > NMax -> 0] Flatten[Numerator[-tCoefficients[10]]] tToEllK[5]
n\m 1 2 3 4 5 6 ------------------------------------------------------ 1 | 6 48 2 | 96 960 160 1536 3 | 5760 30720 725760 1935360 34560 165888 ------------------------------------------------------ row 4: 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664, row 5: 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880.
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]] Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]] RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]}, Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][ Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]] dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]] t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]] tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]] Flatten[Denominator[-tCoefficients[10]]]
Comments