A056982
a(n) = 4^A005187(n). The denominators of the Landau constants.
Original entry on oeis.org
1, 4, 64, 256, 16384, 65536, 1048576, 4194304, 1073741824, 4294967296, 68719476736, 274877906944, 17592186044416, 70368744177664, 1125899906842624, 4503599627370496, 4611686018427387904, 18446744073709551616, 295147905179352825856, 1180591620717411303424
Offset: 0
- J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 84. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
- O. J. Farrell and B. Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77.
- Charles R Greathouse IV, Table of n, a(n) for n = 0..500
- B. Gourevitch, L'univers de Pi
- Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe, Arch. Math. Phys. 21 (1913), 42-50. [Accessible in the USA through the Hathi Trust Digital Library.]
- Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe (Zweite Abhandlung), Arch. Math. Phys. 21 (1913), 250-255. [Accessible in the USA through the Hathi Trust Digital Library.]
- Cristinel Mortici, Sharp bounds of the Landau constants, Math. Comp. 80 (2011), pp. 1011-1018.
- G. N. Watson, The constants of Landau and Lebesgue, Quart. J. Math. Oxford Ser. 1:2 (1930), pp. 310-318.
- Eric Weisstein's World of Mathematics, Gauss-Kummer Series
- Eric Weisstein's World of Mathematics, Ellipse
- Index to divisibility sequences
Apart from offset, identical to
A110258.
-
A056982 := n -> denom(binomial(1/2, n))^2:
seq(A056982(n), n=0..19); # Peter Luschny, Apr 08 2016
# Alternatively:
G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20):
[seq(coeff(ser,x,n), n=0..19)]: denom(%); # Peter Luschny, Sep 28 2019
-
Table[Power[4, 2 n - DigitCount[2 n, 2, 1]], {n, 0, 19}] (* Michael De Vlieger, May 30 2016, after Harvey P. Dale at A005187 *)
G[x_] := (2 EllipticK[x])/(Pi (1 - x));
CoefficientList[Series[G[x], {x, 0, 19}], x] // Denominator (* Peter Luschny, Sep 28 2019 *)
-
a(n)=my(s=n); while(n>>=1, s+=n); 4^s \\ Charles R Greathouse IV, Apr 07 2012
A038534
Numerators of coefficients of EllipticK/Pi.
Original entry on oeis.org
1, 1, 9, 25, 1225, 3969, 53361, 184041, 41409225, 147744025, 2133423721, 7775536041, 457028729521, 1690195005625, 25145962430625, 93990019574025, 90324408810638025, 340357374376418025, 5147380044581630625, 19520119892056100625, 1187604094232693162025
Offset: 0
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 91, Eq. 2.1.
- L. D. Landau und E. M. Lifschitz, Mechanik, Akademie Verlag, Berlin, 1967, p. 30 (Exercise 1 in chapter III, paragraph 11.)
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- B. Klee, Digital Pendulum Data Analysis: Output, Github, 2016.
- David P. Roberts and Fernando Rodriguez Villegas, Hypergeometric Motives, arXiv:2109.00027 [math.AG], 2021. See (1.2) p. 1.
- G. N. Watson, A Note on Gamma Functions.Edinburgh Mathematical Notes, 42, 1959, pp 7-9.
-
swing := proc(n) option remember; if n = 0 then 1 elif n mod 2 = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
sigma := n -> 2^(add(i, i = convert(iquo(n, 2), base, 2))):
a := n -> (swing(2*n)/sigma(2*n))^2; seq(a(n),n=0..20); # Peter Luschny, Aug 06 2014
-
Numerator@ CoefficientList[ Series[ EllipticK@x, {x, 0, 19}]/Pi, x] (* Robert G. Wilson v, Jul 19 2007 *)
A273506
T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.
Original entry on oeis.org
1, -1, 7, 1, -1, 11, -1, 319, -143, 715, 1, -26, 559, -221, 4199, -2, 139, -323, 6137, -2261, 52003, 1, -10897, 135983, -4199, 527459, -52003, 37145, -1, 15409, -317281, 21586489, -52877, 7429, -88711, 1964315, 1, -76, 269123, -100901, 274873, -8671, 227447, -227447, 39803225, -2, 466003, -213739, 522629, -59074189, 226061641, -10690009, 25701511, -42077695, 547010035
Offset: 1
n/m 1 2 3 4
------------------------------
1 | 1
2 | -1, 7
3 | 1, -1, 11
4 | -1, 319, -143, 715
------------------------------
R2(Q) = sqrt(4 k) (1 + (1/6) cos(Q)^4 k + (-(1/45) cos(Q)^6 + (7/72) cos(Q)^8) k^2)
R2(Q)^2 = 4 k + (4/3) cos(Q)^4 k^2 + ( -(8/45) cos(Q)^6 + (8/9) cos(Q)^8)k^3 + ...
I2 = (1/(2 Pi)) Int dQ (1/2)R2(Q)^2 = 2 k + (1/4) k^2 + (3/32) k^3 + ...
(2/Pi) K(k) ~ (1/2)d/dk(I2) = 1 + (1/4) k + (9/64) k^2 + ...
From _Wolfdieter Lang_, Jun 11 2016 (Start):
The rational triangle r(n,m) = a(n, m) / A273507(n,m) begins:
n\m 1 2 3 4 ...
1: 1/6
2: -1/45 7/72
3: 1/630 -1/30 11/144
4: -1/14175 319/56700 -143/3240 715/10368
... ,
row n = 5: 1/467775 -26/42525 559/45360 -221/3888 4199/62208,
row 6: -2/42567525 139/2910600 -323/145800 6137/272160 -2261/31104 52003/746496,
row 7: 1/1277025750 -10897/3831077250 135983/471517200 -4199/729000 527459/13996800 -52003/559872 37145/497664,
row 8:
-1/97692469875 15409/114932317500 -317281/10945935000 21586489/20207880000 -52877/4199040 7429/124416 -88711/746496 1964315/23887872.
... (End)
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
RCoefficients[n_] := With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
R2ToEllK[NMax_] := D[Expand[(2)^(-2) ReplaceAll[R[NMax], RRules[NMax]]^2] /. {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0},k]
Flatten[Numerator@RCoefficients[10]]
R2ToEllK[10]
A273496
Triangle read by rows: coefficients in the expansion cos(x)^n = (1/2)^n * Sum_{k=0..n} T(n,k) * cos(k*x).
Original entry on oeis.org
1, 0, 2, 2, 0, 2, 0, 6, 0, 2, 6, 0, 8, 0, 2, 0, 20, 0, 10, 0, 2, 20, 0, 30, 0, 12, 0, 2, 0, 70, 0, 42, 0, 14, 0, 2, 70, 0, 112, 0, 56, 0, 16, 0, 2, 0, 252, 0, 168, 0, 72, 0, 18, 0, 2, 252, 0, 420, 0, 240, 0, 90, 0, 20, 0, 2
Offset: 0
n/k| 0 1 2 3 4 5 6
-------------------------------
0 | 1
1 | 0 2
2 | 2 0 2
3 | 0 6 0 2
4 | 6 0 8 0 2
5 | 0 20 0 10 0 2
6 | 20 0 30 0 12 0 2
-------------------------------
cos(x)^4 = (1/2)^4 (6 + 8 cos(2x) + 2 cos(4x)).
I4 = Int dx cos(x)^4 = (1/2)^4 Int dx ( 6 + 8 cos(2x) + 2 cos(4x) ) = C + 3/8 x + 1/4 sin(2x) + 1/32 sin(4x).
Over range [0,2Pi], I4 = (3/4) Pi.
Cf.
A000984,
A001790,
A046161,
A038533,
A038534,
A273506,
A273507,
A273167,
A273168,
A244420,
A244421.
-
T[MaxN_] := Function[{n}, With[
{exp = Expand[Times[ 2^n, TrigReduce[Cos[x]^n]]]},
Prepend[Coefficient[exp, Cos[# x]] & /@ Range[1, n],
exp /. {Cos[_] -> 0}]]][#] & /@ Range[0, MaxN];Flatten@T[10]
(* alternate program *)
T2[MaxN_] := Function[{n}, With[{exp = Expand[(Exp[I x] + Exp[-I x])^n]}, Prepend[2 Coefficient[exp, Exp[I # x]] & /@ Range[1, n], exp /. {Exp[] -> 0}]]][#] & /@ Range[0, MaxN]; T2[10] // ColumnForm (* _Bradley Klee, Jun 13 2016 *)
A273507
T(n, m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.
Original entry on oeis.org
6, 45, 72, 630, 30, 144, 14175, 56700, 3240, 10368, 467775, 42525, 45360, 3888, 62208, 42567525, 2910600, 145800, 272160, 31104, 746496, 1277025750, 3831077250, 471517200, 729000, 13996800, 559872, 497664, 97692469875, 114932317500, 10945935000, 20207880000, 4199040, 124416, 746496, 23887872
Offset: 1
n/m 1 2 3 4
------------------------------
1 | 6
2 | 45, 72
3 | 630, 30, 144
4 | 14175, 56700, 3240, 10368
------------------------------
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[
Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
RCoefficients[n_] := With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
Flatten[Denominator@RCoefficients[10]]
A274076
T(n, m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.
Original entry on oeis.org
-2, 2, -2, -4, 8, -20, 2, -58, 14, -70, -4, 16, -344, 112, -28, 4, -556, 1064, -152, 308, -308, -8, 10256, -3368, 4576, -6248, 2288, -1144, 2, -1622, 33398, -98794, 34606, -4862, 2002, -1430, -4, 6688, -187216, 140384, -1242904, 59488, -25168, 77792, -48620
Offset: 1
The triangle T(n, m) begins:
n/m 1 2 3 4
------------------------------
1 | -2
2 | 2, -2
3 | -4, 8, -20
4 | 2, -58, 14, -70
------------------------------
The rational triangle T(n, m) / A274078(n, m) begins:
n/m 1 2 3 4
------------------------------------------
1 | -2/3
2 | 2/15, -2/3
3 | -4/315, 8/27, -20/27
4 | 2/2835, -58/945, 14/27, -70/81
------------------------------------------
dt2(Q) = dQ(-1 - (2/3) cos(Q)^4 k + ((2/15) cos(Q)^6 - (2/3) cos(Q)^8) k^2 ) + ...
dt2(Q) = dQ(-1 - (1/4) k - (9/64) k^2 + cosine series ) + ...
(2/Pi) K(k) ~ I2 = (1/(2 Pi)) Int dt2(Q) = 1 + (1/4) k + (9/64) k^2+ ...
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
dtCoefficients[n_] := With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
dtToEllK[NMax_] := ReplaceAll[-dt[NMax], {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0} ]
Flatten[Numerator[dtCoefficients[10]]]
dtToEllK[5]
A274078
T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.
Original entry on oeis.org
3, 15, 3, 315, 27, 27, 2835, 945, 27, 81, 155925, 2025, 2025, 135, 27, 6081075, 779625, 30375, 405, 243, 243, 638512875, 212837625, 654885, 42525, 8505, 1215, 729, 10854718875, 638512875, 58046625, 4465125, 127575, 3645, 729, 729
Offset: 1
n\m| 1 2 3 4
---+---------------------
1 | 3;
2 | 15, 3;
3 | 315, 27, 27;
4 | 2835, 945, 27, 81;
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
dtCoefficients[n_] := With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
Flatten[Denominator[dtCoefficients[10]]]
A274130
Irregular triangle T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.
Original entry on oeis.org
1, 1, 11, 29, 1, 1, 491, 863, 6571, 4399, 13, 5, 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35, 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7, 5301974777, 22870237, 1603483793, 23507881213, 122574691, 122330761339, 903325919, 1976751869, 956873, 18551, 35, 77
Offset: 1
n\m 1 2 3 4 5 6 ...
-----------------------------------------
1 | 1 1
2 | 11 29 1 1
3 | 491 863 6571 4399 13 5
row n=4: 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35,
row n=5: 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7.
-----------------------------------------
The rational irregular triangle T(n, m) / A274131(n, m) begins:
n\m 1 2 3 4 5 6
-----------------------------------------------------------------------------
1 | 1/6, 1/48
2 | 11/96, 29/960, 1/160, 1/1536
3 | 491/5760, 863/30720, 6571/725760, 4399/1935360, 13/34560, 5/165888
row n=4: 1568551/23224320, 28783/1161216, 45187/4644864, 312643/92897280, 4351/4644864, 1117/5806080, 17/663552, 35/21233664,
row n=5: 25935757/464486400, 81123251/3715891200, 2226193/232243200, 2440117/619315200, 16025/11354112, 34246631/81749606400, 18161/185794560, 35443/2123366400, 49/26542080, 7/70778880.
-----------------------------------------------------------------------------
t1(Q) =-Q -(1/4)*k*Q -k*((1/6)*Sin[2*Q]+(1/48)*Sin[4*Q])+...
(2/Pi) K(k) ~ (1/(2 Pi)) t1(-2*Pi) = 1+(1/4)*k+...
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
tToEllK[NMax_]:= Expand[((t[NMax] /. Q -> -2 Pi)/2/Pi) /. k^n_ /; n > NMax -> 0]
Flatten[Numerator[-tCoefficients[10]]]
tToEllK[5]
A274131
Irregular triangle T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.
Original entry on oeis.org
6, 48, 96, 960, 160, 1536, 5760, 30720, 725760, 1935360, 34560, 165888, 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664, 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880
Offset: 1
n\m 1 2 3 4 5 6
------------------------------------------------------
1 | 6 48
2 | 96 960 160 1536
3 | 5760 30720 725760 1935360 34560 165888
------------------------------------------------------
row 4: 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664,
row 5: 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880.
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
Flatten[Denominator[-tCoefficients[10]]]
A276738
Irregular triangle read by rows: T(n,m) = coefficients in a power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space trajectory.
Original entry on oeis.org
-1, -1, 5, -1, 12, -32, -1, 14, 7, -126, 231, -1, 16, 16, -160, -160, 1280, -1792, -1, 18, 18, -198, 9, -396, 1716, -66, 2574, -12870, 14586, -1, 20, 20, -240, 20, -480, 2240, -240, -240, 6720, -17920, 2240, -35840, 129024, -122880, -1, 22, 22, -286, 22, -572, 2860, 11, -572, -286, 8580, -24310, -286, 4290, 8580, -97240, 184756, 715
Offset: 1
n/m 1 2 3 4 5 6 7
--------------------------------------------
1 | -1
2 | -1 5
3 | -1 12 -32
4 | -1 14 7 -126 231
5 | -1 16 16 -160 -160 1280 -1792
--------------------------------------------
R[1,Q] = -2*v_3*Q^3
R[2,Q] = -2*v_4*Q^4 + 10*v_3^2*Q^6
R[Q] = b*(1+b*(-2*v_3*Q^3)+b^2*(-2*v_4*Q^4 + 10*v_3^2*Q^6 ))+O(b^4)
Construct basis for R[4,Q]; List partitions: {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}; Transform Plus 2: {{v_6}, {v_5, v_3}, {v_4, v_4}, {v_4, v_3, v_3}, {v_3, v_3, v_3, v_3}}; Multiply: {v_6, v_5*v_3, v_4^2, v_4*v_3^2, v_3^4}; don't forget power of Q and factor of 2: {2*v_6*Q^6, 2*v_5*v_3*Q^8, 2*v_4^2*Q^8, 2*v_4*v_3^2*Q^10, 2*v_3^4*Q^12}.
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
TriangleRow[n_, rules_] := With[{term = Expand[rules[[n, 2]]]},
Coefficient[term, #] & /@ basis[n]]
With[{rules = RRules[10]}, TriangleRow[#, rules] & /@ Range[10]]
Showing 1-10 of 18 results.
Comments