A260832
a(n) = numerator(Jtilde2(n)).
Original entry on oeis.org
1, 3, 41, 147, 8649, 32307, 487889, 1856307, 454689481, 1748274987, 26989009929, 104482114467, 6488426222001, 25239009088827, 393449178700161, 1535897056631667, 1537112996582116041, 6016831929058214523, 94316599529950360769, 369994845516850143483, 23244865440911268112681
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..830
- Takashi Ichinose and Masato Wakayama, Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations, Kyushu Journal of Mathematics, Vol. 59 (2005) No. 1 p. 39-100.
- Kazufumi Kimoto and Masato Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators, Kyushu Journal of Mathematics, Vol. 60 (2006) No. 2 p. 383-404 (see Table 1).
- Ling Long, Robert Osburn and Holly Swisher, On a conjecture of Kimoto and Wakayama, Proc. Amer. Math. Soc. 144 (2016), 4319-4327.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include
A000172,
A000984,
A002893,
A002895,
A005258,
A005259,
A005260,
A006077,
A036917,
A063007,
A081085,
A093388,
A125143 (apart from signs),
A143003,
A143007,
A143413,
A143414,
A143415,
A143583,
A183204,
A214262,
A219692,
A226535,
A227216,
A227454,
A229111 (apart from signs),
A260667,
A260832,
A262177,
A264541,
A264542,
A279619,
A290575,
A290576. (The term "Apery-like" is not well-defined.)
-
a := n -> numer(simplify(hypergeom([1/2, 1/2, -n], [1, 1], 1))):
seq(a(n), n = 0..20); # Peter Luschny, Dec 08 2022
-
Numerator[Table[Sum[ (-1)^k*Binomial[-1/2, k]^2*Binomial[n, k], {k, 0, n}], {n,0,50}]] (* G. C. Greubel, Feb 15 2017 *)
-
a(n) = numerator(sum(k=0, n, (-1)^k*binomial(-1/2,k)^2*binomial(n, k)));
-
a(n) = numerator(sum(k=0, n, binomial(2*k, k)*binomial(4*k, 2*k)* binomial(2*(n-k),n-k)*binomial(4*(n-k),2*(n-k))) / (2^(4*n)* binomial(2*n,n)));
A038534
Numerators of coefficients of EllipticK/Pi.
Original entry on oeis.org
1, 1, 9, 25, 1225, 3969, 53361, 184041, 41409225, 147744025, 2133423721, 7775536041, 457028729521, 1690195005625, 25145962430625, 93990019574025, 90324408810638025, 340357374376418025, 5147380044581630625, 19520119892056100625, 1187604094232693162025
Offset: 0
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 91, Eq. 2.1.
- L. D. Landau und E. M. Lifschitz, Mechanik, Akademie Verlag, Berlin, 1967, p. 30 (Exercise 1 in chapter III, paragraph 11.)
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- B. Klee, Digital Pendulum Data Analysis: Output, Github, 2016.
- David P. Roberts and Fernando Rodriguez Villegas, Hypergeometric Motives, arXiv:2109.00027 [math.AG], 2021. See (1.2) p. 1.
- G. N. Watson, A Note on Gamma Functions.Edinburgh Mathematical Notes, 42, 1959, pp 7-9.
-
swing := proc(n) option remember; if n = 0 then 1 elif n mod 2 = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
sigma := n -> 2^(add(i, i = convert(iquo(n, 2), base, 2))):
a := n -> (swing(2*n)/sigma(2*n))^2; seq(a(n),n=0..20); # Peter Luschny, Aug 06 2014
-
Numerator@ CoefficientList[ Series[ EllipticK@x, {x, 0, 19}]/Pi, x] (* Robert G. Wilson v, Jul 19 2007 *)
A038533
Denominator of coefficients of both EllipticK/Pi and EllipticE/Pi.
Original entry on oeis.org
2, 8, 128, 512, 32768, 131072, 2097152, 8388608, 2147483648, 8589934592, 137438953472, 549755813888, 35184372088832, 140737488355328, 2251799813685248, 9007199254740992, 9223372036854775808, 36893488147419103232, 590295810358705651712, 2361183241434822606848
Offset: 0
-
a[n_] := 2^(4*n - 2*DigitCount[n, 2, 1] + 1); Array[a, 20, 0] (* Amiram Eldar, Aug 03 2023 *)
-
a(n)=my(s=n); while(n>>=1, s+=n); 2<<(2*s) \\ Charles R Greathouse IV, Apr 07 2012
A273506
T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.
Original entry on oeis.org
1, -1, 7, 1, -1, 11, -1, 319, -143, 715, 1, -26, 559, -221, 4199, -2, 139, -323, 6137, -2261, 52003, 1, -10897, 135983, -4199, 527459, -52003, 37145, -1, 15409, -317281, 21586489, -52877, 7429, -88711, 1964315, 1, -76, 269123, -100901, 274873, -8671, 227447, -227447, 39803225, -2, 466003, -213739, 522629, -59074189, 226061641, -10690009, 25701511, -42077695, 547010035
Offset: 1
n/m 1 2 3 4
------------------------------
1 | 1
2 | -1, 7
3 | 1, -1, 11
4 | -1, 319, -143, 715
------------------------------
R2(Q) = sqrt(4 k) (1 + (1/6) cos(Q)^4 k + (-(1/45) cos(Q)^6 + (7/72) cos(Q)^8) k^2)
R2(Q)^2 = 4 k + (4/3) cos(Q)^4 k^2 + ( -(8/45) cos(Q)^6 + (8/9) cos(Q)^8)k^3 + ...
I2 = (1/(2 Pi)) Int dQ (1/2)R2(Q)^2 = 2 k + (1/4) k^2 + (3/32) k^3 + ...
(2/Pi) K(k) ~ (1/2)d/dk(I2) = 1 + (1/4) k + (9/64) k^2 + ...
From _Wolfdieter Lang_, Jun 11 2016 (Start):
The rational triangle r(n,m) = a(n, m) / A273507(n,m) begins:
n\m 1 2 3 4 ...
1: 1/6
2: -1/45 7/72
3: 1/630 -1/30 11/144
4: -1/14175 319/56700 -143/3240 715/10368
... ,
row n = 5: 1/467775 -26/42525 559/45360 -221/3888 4199/62208,
row 6: -2/42567525 139/2910600 -323/145800 6137/272160 -2261/31104 52003/746496,
row 7: 1/1277025750 -10897/3831077250 135983/471517200 -4199/729000 527459/13996800 -52003/559872 37145/497664,
row 8:
-1/97692469875 15409/114932317500 -317281/10945935000 21586489/20207880000 -52877/4199040 7429/124416 -88711/746496 1964315/23887872.
... (End)
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
RCoefficients[n_] := With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
R2ToEllK[NMax_] := D[Expand[(2)^(-2) ReplaceAll[R[NMax], RRules[NMax]]^2] /. {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0},k]
Flatten[Numerator@RCoefficients[10]]
R2ToEllK[10]
A273507
T(n, m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.
Original entry on oeis.org
6, 45, 72, 630, 30, 144, 14175, 56700, 3240, 10368, 467775, 42525, 45360, 3888, 62208, 42567525, 2910600, 145800, 272160, 31104, 746496, 1277025750, 3831077250, 471517200, 729000, 13996800, 559872, 497664, 97692469875, 114932317500, 10945935000, 20207880000, 4199040, 124416, 746496, 23887872
Offset: 1
n/m 1 2 3 4
------------------------------
1 | 6
2 | 45, 72
3 | 630, 30, 144
4 | 14175, 56700, 3240, 10368
------------------------------
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[
Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
RCoefficients[n_] := With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
Flatten[Denominator@RCoefficients[10]]
A274076
T(n, m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.
Original entry on oeis.org
-2, 2, -2, -4, 8, -20, 2, -58, 14, -70, -4, 16, -344, 112, -28, 4, -556, 1064, -152, 308, -308, -8, 10256, -3368, 4576, -6248, 2288, -1144, 2, -1622, 33398, -98794, 34606, -4862, 2002, -1430, -4, 6688, -187216, 140384, -1242904, 59488, -25168, 77792, -48620
Offset: 1
The triangle T(n, m) begins:
n/m 1 2 3 4
------------------------------
1 | -2
2 | 2, -2
3 | -4, 8, -20
4 | 2, -58, 14, -70
------------------------------
The rational triangle T(n, m) / A274078(n, m) begins:
n/m 1 2 3 4
------------------------------------------
1 | -2/3
2 | 2/15, -2/3
3 | -4/315, 8/27, -20/27
4 | 2/2835, -58/945, 14/27, -70/81
------------------------------------------
dt2(Q) = dQ(-1 - (2/3) cos(Q)^4 k + ((2/15) cos(Q)^6 - (2/3) cos(Q)^8) k^2 ) + ...
dt2(Q) = dQ(-1 - (1/4) k - (9/64) k^2 + cosine series ) + ...
(2/Pi) K(k) ~ I2 = (1/(2 Pi)) Int dt2(Q) = 1 + (1/4) k + (9/64) k^2+ ...
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
dtCoefficients[n_] := With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
dtToEllK[NMax_] := ReplaceAll[-dt[NMax], {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0} ]
Flatten[Numerator[dtCoefficients[10]]]
dtToEllK[5]
A274078
T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.
Original entry on oeis.org
3, 15, 3, 315, 27, 27, 2835, 945, 27, 81, 155925, 2025, 2025, 135, 27, 6081075, 779625, 30375, 405, 243, 243, 638512875, 212837625, 654885, 42525, 8505, 1215, 729, 10854718875, 638512875, 58046625, 4465125, 127575, 3645, 729, 729
Offset: 1
n\m| 1 2 3 4
---+---------------------
1 | 3;
2 | 15, 3;
3 | 315, 27, 27;
4 | 2835, 945, 27, 81;
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
dtCoefficients[n_] := With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
Flatten[Denominator[dtCoefficients[10]]]
A274130
Irregular triangle T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.
Original entry on oeis.org
1, 1, 11, 29, 1, 1, 491, 863, 6571, 4399, 13, 5, 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35, 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7, 5301974777, 22870237, 1603483793, 23507881213, 122574691, 122330761339, 903325919, 1976751869, 956873, 18551, 35, 77
Offset: 1
n\m 1 2 3 4 5 6 ...
-----------------------------------------
1 | 1 1
2 | 11 29 1 1
3 | 491 863 6571 4399 13 5
row n=4: 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35,
row n=5: 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7.
-----------------------------------------
The rational irregular triangle T(n, m) / A274131(n, m) begins:
n\m 1 2 3 4 5 6
-----------------------------------------------------------------------------
1 | 1/6, 1/48
2 | 11/96, 29/960, 1/160, 1/1536
3 | 491/5760, 863/30720, 6571/725760, 4399/1935360, 13/34560, 5/165888
row n=4: 1568551/23224320, 28783/1161216, 45187/4644864, 312643/92897280, 4351/4644864, 1117/5806080, 17/663552, 35/21233664,
row n=5: 25935757/464486400, 81123251/3715891200, 2226193/232243200, 2440117/619315200, 16025/11354112, 34246631/81749606400, 18161/185794560, 35443/2123366400, 49/26542080, 7/70778880.
-----------------------------------------------------------------------------
t1(Q) =-Q -(1/4)*k*Q -k*((1/6)*Sin[2*Q]+(1/48)*Sin[4*Q])+...
(2/Pi) K(k) ~ (1/(2 Pi)) t1(-2*Pi) = 1+(1/4)*k+...
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
tToEllK[NMax_]:= Expand[((t[NMax] /. Q -> -2 Pi)/2/Pi) /. k^n_ /; n > NMax -> 0]
Flatten[Numerator[-tCoefficients[10]]]
tToEllK[5]
A274131
Irregular triangle T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.
Original entry on oeis.org
6, 48, 96, 960, 160, 1536, 5760, 30720, 725760, 1935360, 34560, 165888, 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664, 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880
Offset: 1
n\m 1 2 3 4 5 6
------------------------------------------------------
1 | 6 48
2 | 96 960 160 1536
3 | 5760 30720 725760 1935360 34560 165888
------------------------------------------------------
row 4: 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664,
row 5: 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880.
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
Flatten[Denominator[-tCoefficients[10]]]
A110258
Denominators in the coefficients that form the odd-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x.
Original entry on oeis.org
1, 4, 64, 256, 16384, 65536, 1048576, 4194304, 1073741824, 4294967296, 68719476736, 274877906944, 17592186044416, 70368744177664, 1125899906842624, 4503599627370496, 4611686018427387904
Offset: 1
arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,
768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,
1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi:
{3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:
{1, 5/4, 81/64, 325/256, 20825/16384, ...}.
See
A056982 for another version of this sequence.
-
{a(n)=denominator(subst((contfrac( sum(k=0,2*n+1,(-1)^k/x^(2*k+1)/(2*k+1)),2*n+2))[2*n],x,1))}
-
a(n)=4^(2*n-vecsum(binary(n-1))-2) \\ Charles R Greathouse IV, Apr 09 2012
Showing 1-10 of 33 results.
Comments