cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A056982 a(n) = 4^A005187(n). The denominators of the Landau constants.

Original entry on oeis.org

1, 4, 64, 256, 16384, 65536, 1048576, 4194304, 1073741824, 4294967296, 68719476736, 274877906944, 17592186044416, 70368744177664, 1125899906842624, 4503599627370496, 4611686018427387904, 18446744073709551616, 295147905179352825856, 1180591620717411303424
Offset: 0

Views

Author

Keywords

Comments

Also equal to A046161(n)^2.
Let W(n) = Product_{k=1..n} (1- 1/(4*k^2)), the partial Wallis product with lim n -> infinity W(n) = 2/Pi; a(n) = denominator(W(n)). The numerators are in A069955.
Equivalently, denominators in partial products of the following approximation to Pi: Pi = Product_{n >= 1} 4*n^2/(4*n^2-1). Numerators are in A069955.
Denominator of h^(2n) in the Kummer-Gauss series for the perimeter of an ellipse.
Denominators of coefficients in hypergeometric([1/2,-1/2],[1],x). The numerators are given in A038535. hypergeom([1/2,-1/2],[1],e^2) = L/(2*Pi*a) with the perimeter L of an ellipse with major axis a and numerical eccentricity e (Maclaurin 1742). - Wolfdieter Lang, Nov 08 2010
Also denominators of coefficients in hypergeometric([1/2,1/2],[1],x). The numerators are given in A038534. - Wolfdieter Lang, May 29 2016
Also denominators of A277233. - Wolfdieter Lang, Nov 16 2016
A277233(n)/a(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2, where g(n) = (2*n)!/(2^n*n!)^2 = A001790(n)/A046161(n). - Peter Luschny, Sep 27 2019

References

  • J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 84. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
  • O. J. Farrell and B. Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77.

Crossrefs

Apart from offset, identical to A110258.
Equals (1/2)*A038533(n), A038534, A277233.

Programs

  • Maple
    A056982 := n -> denom(binomial(1/2, n))^2:
    seq(A056982(n), n=0..19); # Peter Luschny, Apr 08 2016
    # Alternatively:
    G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20):
    [seq(coeff(ser,x,n), n=0..19)]: denom(%); # Peter Luschny, Sep 28 2019
  • Mathematica
    Table[Power[4, 2 n - DigitCount[2 n, 2, 1]], {n, 0, 19}] (* Michael De Vlieger, May 30 2016, after Harvey P. Dale at A005187 *)
    G[x_] := (2 EllipticK[x])/(Pi (1 - x));
    CoefficientList[Series[G[x], {x, 0, 19}], x] // Denominator (* Peter Luschny, Sep 28 2019 *)
  • PARI
    a(n)=my(s=n); while(n>>=1, s+=n); 4^s \\ Charles R Greathouse IV, Apr 07 2012

Formula

a(n) = (denominator(binomial(1/2, n)))^2. - Peter Luschny, Sep 27 2019

Extensions

Edited by N. J. A. Sloane, Feb 18 2004, Jun 05 2007

A001068 a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 0

Views

Author

Keywords

Comments

From M. F. Hasler, Oct 21 2008: (Start)
Also, for n>0, the 4th term (after [0,n,3n]) in the continued fraction expansion of arctan(1/n). (Observation by V. Reshetnikov)
Proof:
arctan(1/n) = (1/n) / (1 + (1/n)^2/( 3 + (2/n)^2/( 5 + (3/n)^2/( 7 + ...)...)
= 1 / ( n + 1/( 3n + 4/( 5n + 9/( 7n + 25/(...)...)
= 1 / ( n + 1/( 3n + 1/( 5n/4 + (9/4)/( 7n + 25/(...)...),
and the term added to 5n/4, (9/4)/(7n+...) = (1/4)*9/(7n+...) is less than 1/4 for all n>=2. (End)

Crossrefs

Programs

Formula

contfrac( arctan( 1/n )) = 0 + 1/( n + 1/( 3n + 1/( a(n) + 1/(...)))). - M. F. Hasler, Oct 21 2008
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=2 and b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011.
From Bruno Berselli, Oct 17 2011: (Start)
G.f.: x*(1+x+x^2+2*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (10*n+2*(-1)^((n-1)n/2)+(-1)^n-3)/8.
a(-n) = -A047203(n+1). (End)
From Wesley Ivan Hurt, Sep 17 2015: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
a(n) = n + floor(n/4). (End)
a(n) = n + A002265(n). - Robert Israel, Sep 17 2015
E.g.f.: (sin(x) + cos(x) + (5*x - 2)*sinh(x) + (5*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 06 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 + sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021

Extensions

More terms from James Sellers, Sep 19 2000

A110255 Numerators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

1, 3, 5, 28, 81, 704, 325, 768, 20825, 311296, 83349, 1507328, 1334025, 3145728, 5337189, 130023424, 1366504425, 7516192768, 5466528925, 12884901888, 87470372561, 2954937499648, 349899121845, 12919261626368, 22394407746529
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Limit a(2*n-1)/A110256(2*n-1) = limit A110257(n)/A110258(n) = 4/Pi.
Limit a(2*n)/A110256(2*n) = limit A110259(n)/A110260(n) = Pi.

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,
768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,
1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi:
{3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:
{1, 5/4, 81/64, 325/256, 20825/16384, ...}.
		

Crossrefs

Cf. A110256 (denominators), A110257/A110258 (odd-indexed), A110259/A110260 (even-indexed).

Programs

  • PARI
    {a(n)=numerator(subst((contfrac( sum(k=0,n,(-1)^k/x^(2*k+1)/(2*k+1)),n+1))[n+1],x,1))}

A110256 Denominators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

1, 1, 4, 9, 64, 225, 256, 245, 16384, 99225, 65536, 480249, 1048576, 1002001, 4194304, 41409225, 1073741824, 2393453205, 4294967296, 4102737925, 68719476736, 940839860961, 274877906944, 4113258565689, 17592186044416
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Limit A110255(2*n-1)/a(2*n-1) = limit A110257(n)/A110258(n) = 4/Pi.
Limit A110255(2*n)/a(2*n) = limit A110259(n)/A110260(n) = Pi.

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,
768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,
1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi:
{3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:
{1, 5/4, 81/64, 325/256, 20825/16384, ...}.
		

Crossrefs

Cf. A110255 (numerators), A110257/A110258 (odd-indexed), A110259/A110260 (even-indexed).
Cf. A095175. [From R. J. Mathar, Aug 18 2008]

Programs

  • PARI
    {a(n)=denominator(subst((contfrac( sum(k=0,n,(-1)^k/x^(2*k+1)/(2*k+1)),n+1))[n+1],x,1))}

A110257 Numerators in the coefficients that form the odd-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

1, 5, 81, 325, 20825, 83349, 1334025, 5337189, 1366504425, 5466528925, 87470372561, 349899121845, 22394407746529, 89580335298125, 1433319858545625, 5733391194015525, 5871086572691471625
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Limit a(n)/A110258(n) = limit A110255(2*n-1)/A110256(2*n-1) = 4/Pi.

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x, 768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x, 1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi: {3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: {1, 5/4, 81/64, 325/256, 20825/16384, ...}.
		

Crossrefs

Cf. A110258 (denominators), A110255/A110256 (continued fraction), A110259/A110260.

Programs

  • Maple
    a := n -> (4*n+1)*binomial(2*n,n)^2/4^(add(i,i=convert(n,base,2)));
    seq(a(n), n=0..16);  # Peter Luschny, Mar 23 2014
  • Mathematica
    a[n_] := (4n+1) Binomial[2n, n]^2 / 4^DigitCount[n, 2, 1];
    Array[a, 16] (* Jean-François Alcover, Jun 13 2019, from Maple *)
  • PARI
    {a(n)=numerator(subst((contfrac( sum(k=0,2*n+1,(-1)^k/x^(2*k+1)/(2*k+1)),2*n+2))[2*n],x,1))}

Formula

a(n) = A110255(2*n-1).
a(n) = (4*n+1)*A002894(n)/4^A000120(n). - Peter Luschny, Mar 23 2014

A110259 Numerators in the coefficients that form the even-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

3, 28, 704, 768, 311296, 1507328, 3145728, 130023424, 7516192768, 12884901888, 2954937499648, 12919261626368, 52776558133248, 774056185954304, 66428094503714816, 31525197391593472, 308982963234634989568
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Lim_{n->infinity} a(n)/A110260(n) = lim_{n->infinity} A110255(2*n)/A110256(2*n) = Pi.
The continued fraction expansion arctan(z) = z/(1 + z^2/(3 + 4*z^2/(5 + 9*z^2/(7 + ...)))) is due to Lambert - see Roegel, Section 1.2.1. - Peter Bala, Dec 02 2021

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +- ...
arctan(1/x) = [0; x, 3*x, (5/4)*x, (28/9)*x, (81/64)*x, (704/225)*x, (325/256)*x, (768/245)*x, (20825/16384)*x, (311296/99225)*x, (83349/65536)*x, (1507328/480249)*x, (1334025/1048576)*x, (3145728/1002001)*x, ...]
arctan(1/x) = 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x + ...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi: {3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: {1, 5/4, 81/64, 325/256, 20825/16384, ...}.
From _Peter Bala_, Dec 02 2021: (Start)
Making use of the expansion 2*arcsin(sqrt(x)/2)^2 = Sum_{n >= 1} x^n/ (n^2*binomial(2*n,n)) we calculate
3 + Pi = Sum_{n >= 1} (2^n)*n/binomial(2*n,n);
28 + 9*Pi = Sum_{n >= 3} (2^n)*n*(n-1)*(n-2)/binomial(2*n,n);
704 + 225*Pi = Sum_{n >= 5} (2^n)*n*(n-1)*...*(n-4)/binomial(2*n,n);
45*(768 + 245*Pi) = Sum_{n >= 7} (2^n)*n*(n-1)*...*(n-6)/binomial(2*n,n);
9*(311296 + 99225*Pi) = Sum_{n >= 9} (2^n)*n*(n-1)*...*(n-8)/ binomial(2*n,n).
It appears that Sum_{n >= 2*k+1} (2^n)*n*(n-1)*...*(n-2*k)/binomial(2*n,n) = N(2*k) + D(2*k)*Pi, where the ratios N(2*k)/D(2*k) are equal to the even-indexed partial quotients of Lambert's continued fraction representation of the inverse tangent of 1/x. (End)
		

Crossrefs

Cf. A110260 (denominators), A110255/A110256 (continued fraction), A110257/A110258.

Programs

  • PARI
    {a(n)=numerator(subst((contfrac( sum(k=0,2*n+2,(-1)^k/x^(2*k+1)/(2*k+1)),2*n+2))[2*n+1],x,1))}

Formula

a(n) = A110255(2*n).

A110260 Denominators in the coefficients that form the even-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

1, 9, 225, 245, 99225, 480249, 1002001, 41409225, 2393453205, 4102737925, 940839860961, 4113258565689, 16802526820625, 246430431820125, 21147754404155625, 10036045423404225, 98363281194784809225
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Limit A110259(n)/a(n) = limit A110255(2*n)/A110256(2*n) = Pi.

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,
768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,
1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi:
{3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:
{1, 5/4, 81/64, 325/256, 20825/16384, ...}.
		

Crossrefs

Cf. A110259 (numerators), A110255/A110256 (continued fraction), A110257/A110258.

Programs

  • PARI
    {a(n)=denominator(subst((contfrac( sum(k=0,2*n+2,(-1)^k/x^(2*k+1)/(2*k+1)),2*n+2))[2*n+1],x,1))}

Formula

a(n) = A110256(2*n).

A381198 a(n) = denominator( [(x*y*z*u)^n] 1/sqrt(1 - (x + y + z + u*(x*y + x*z + y*z))) ).

Original entry on oeis.org

1, 4, 64, 256, 16384, 65536, 1048576, 4194304, 1073741824, 4294967296, 68719476736, 274877906944, 17592186044416, 70368744177664, 1125899906842624, 4503599627370496, 4611686018427387904, 18446744073709551616, 295147905179352825856, 1180591620717411303424, 75557863725914323419136
Offset: 0

Views

Author

Stefano Spezia, Feb 16 2025

Keywords

Comments

Apparently a duplicate of A110258 and A056982. - R. J. Mathar, Feb 18 2025

Crossrefs

Cf. A268554, A381197 (numerators).

Programs

  • Mathematica
    a[n_]:=Denominator[SeriesCoefficient[1/Sqrt[1-(x+y+z+u*(x*y+x*z+y*z))],{x,0,n},{y,0,n},{z,0,n},{u,0,n}]]; Array[a,15,0]
Showing 1-8 of 8 results.